Archived from the original on 2015-03-16. ↑ Darwin in Cambridge Archived 23 March 2017 at the Wayback Machine. ↑ Charles Darwin's personal finances revealed in new find Archived 19 October 2017 at the Wayback Machine. ↑ "Darwin" Archived 18 July 2014 at the Wayback Machine. entry in Collins English Dictionary. ↑ Desmond, Moore & Browne 2004 ↑ Coyne, Jerry A. (2009). Why Evolution is True.
Archived from the original on 2015-03-16. ↑ Darwin in Cambridge Archived 23 March 2017 at the Wayback Machine. ↑ Charles Darwin's personal finances revealed in new find Archived 19 October 2017 at the Wayback Machine. ↑ "Darwin" Archived 18 July 2014 at the Wayback Machine. entry in Collins English Dictionary. ↑ Desmond, Moore & Browne 2004 ↑ ', 978-0-670-02053-9 ↑ Larson 2004, pp. 79–111 ↑ Coyne, Jerry A. (2009).


Viking. pp. 8–11.
Why Evolution is True.

ISBN 978-0-670-02053-9. ↑ Larson 2004, pp. 79–111 ↑ Coyne, Jerry A. (2009).
Oxford: Oxford University Press. p. 17.

Why Evolution is True.
ISBN 0-19-923084-6.

Oxford: Oxford University Press. p. 17. ISBN 0-19-923084-6. In The Origin, Darwin provided an alternative hypothesis for the development, diversification, and design of life.
In The Origin, Darwin provided an alternative hypothesis for the development, diversification, and design of life.

sol-air
q A = h o ( T o − T s ) {\displaystyle {\frac {q}{A}}=h_{o}(T_{o}-T_{s})}

q A = h o ( T o − T s ) {\displaystyle {\frac {q}{A}}=h_{o}(T_{o}-T_{s})}
Ue:

Where:
q {\displaystyle q} = tassu de trasmissione de calore [W] A {\displaystyle A} = area de sa superfitzie inue b'at trasmissone de calore [m²] h o {\displaystyle h_{o}} = cuffissiente de trasmissione de calore pro sa radiatzione (long wave) e convetzione [W/m²K] T o {\displaystyle T_{o}} = temperadura de fora a s'inghìriu [°C] T s {\displaystyle T_{s}} = temperadure de sa superfitzie de fora [°C]

Where:
a {\displaystyle a} = surzidade (absorptivity) de sa radiazione solare (surface solar absorptance or the inverse of the solar reflectance of a material) [-] I {\displaystyle I} = irrajamentu solare globale (i.e. total solar radiation incident on the surface) [W/m²] Δ Q i r {\displaystyle \Delta Q_{ir}} = radiatzione extra intraruja dévida a sa differentzia intrae sa temperatura de s'aghera de fora e sa temperatura apparente de su chelu. Custu podet essere iscrìtu comente: Δ Q i r = F r ∗ h r ∗ Δ T o − s k y {\displaystyle \Delta Q_{ir}=F_{r}*h_{r}*\Delta T_{o-sky}} [W/m²]

An equivalent, and more useful equation for the net heat loss across the whole construction is:
q A = U c ( T i − T s o l − a i r ) {\displaystyle {\frac {q}{A}}=U_{c}(T_{i}-T_{\mathrm {sol-air} })}

Where:
U c {\displaystyle U_{c}} = valore-U de sa fraigada, according to ISO 6946 [W/m²K]. T i {\displaystyle T_{i}} = temperadura de intro [°C] Δ T o − s k y {\displaystyle \Delta T_{o-sky}} = differentzia intre sa de fora temeradura-de-sicu-bulbu, e sa media temperadura de radiatzione de su chelu [°C] F r {\displaystyle F_{r}} = fatore de forma intrae s'elementu e su chelu [-] F r {\displaystyle F_{r}} = 1 pro una no-umbrada cobertura orizontale F r {\displaystyle F_{r}} = 0,5 pro unu no-umbradu muru verticale h r {\displaystyle h_{r}} = coeffissiente de trasmissione de calore dae radiatzione de fora [W/m²K]

↑ ISO 13790, Energy performance of buildings — Calculation of energy use for space heating and cooling
Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, USA, 2005 Heating and Cooling of Buildings, 2nd ed., Kreider, Curtiss, Rabl, McGraw-Hill, New York, USA, 2002

Sol-air temperature
Temperadura Sol-aghera

Volumetric efficiency (VE) in internal combustion engine engineering is defined as the ratio of the mass density of the air-fuel mixture drawn into the cylinder at atmospheric pressure (during the intake stroke) to the mass density of the same volume of air in the intake manifold.
S'atòliu volumètricu in s'ingenieria de sos motores a brujamentu internu est definidu comente su raportu de sa densidade de sa massa de sa mistura àera-combustìbile ghetada intro de su tzilindru a pressione atomosfèrica (intro de sa fase de aspiratzione) e de sa densidade de massa de su matessi volùmene de àera in su colletore de intrada.

The term is also used in other engineering contexts, such as hydraulic pumps and electronic components.
Sa paràula est usada fintzas in àteros contestos de s'ingenieria, comente pompas idràulicas e componentes eletrònicos. [esigit tzitassione]

Volumetric efficiency
Atòliu volumètricu

Cooling load is the rate at which sensible and latent heat must be removed from the space to maintain a constant space dry-bulb air temperature and humidity.[1][2] Sensible heat into the space causes its air temperature to rise while latent heat is associated with the rise of the moisture content in the space.
Càrriga de isfritamentu (cooling load in inglesu) est su tassu a sa cale su calore sensibile e su calore latente depent èssere pesados dae su logu pro mantènnere una temperadura de bulbu sicu e una pressione costantes.[1][2] Su calore sensibile intro de su logu che atit sa temepradura sua a arziare, mentras su calore latente est acumonadu cun s'aumentu de sa cantidade de umidade in su logu.

The building design, internal equipment, occupants, and outdoor weather conditions may affect the cooling load in a building using different heat transfer mechanisms.[1] The SI units are watts.
Su design de su fràigu, sos componentes internos, sos ocupadores, e sas cunditziones climàticas podent tennere un influentzìa in sa càrriga de isfritamentu in nd'unu fràigu chi utilizat mecanìsmos de trasmissione de calore diferentes.[1] Sas unidades de su SI sunt sos watts.

Cooling load
Càrriga de isfritamentu

Coordinates: 39°39′45″N 9°17′51″E / 39.6624°N 9.2974°E / 39.6624; 9.2974
39°39′44.64″N 9°17′50.64″E / 39.6624°N 9.2974°E39.6624; 9.2974

Quantities that are dependent on velocity
Cantidades chi dipendent dae sa velotzidade

Polar coordinates
Coordinadas polares

Relative velocity
Velotzidade relativa

Relationship to acceleration
Raportu cun s'atzelerada

Equation of motion
Ecuatzione de su motu

Average velocity
Velotzidade mèdia

Constant acceleration
Atzelerada costante

Distinction between speed and velocity
Distintzione intre velotzidade e lestresa

Scalar velocities
Velotzidades iscalares

Constant velocity vs acceleration
Velotzidade costante vs aceleratzione

Instantaneous velocity
Velotzidade istantànea

The magnitude of the radial velocity is the dot product of the velocity vector and the unit vector in the direction of the displacement.
Sa mannaria de sa velotzidade radiale est su produtu iscalare de su vetore de velotzidade e su vetore unitàriu in sa diretzione de su mudamentu.

Similarly the relative velocity of object B moving with velocity w, relative to object A moving with velocity v is:
A sa matessi manera sa velotzidade relativa de s'ogetu B chi si moet cun sa veloztidade w, relativa a s'ogetu A chi si moet cun sa velotzidade v est:

Usually the inertial frame is chosen in which the latter of the two mentioned objects is in rest.
A su sòlitu benit seberada sa trama inertziale in cale s'ùrtimu de sos duos ogetos mentovados est in pasu.

In the one-dimensional case,[2] the velocities are scalars and the equation is either:
In su casu unidimensionale,[2] sas velotzidade sunt iscalares e s'ecuatzione est:

v r e l = v − ( − w ) {\displaystyle \,v_{rel}=v-(-w)} , if the two objects are moving in opposite directions, or: v r e l = v − ( + w ) {\displaystyle \,v_{rel}=v-(+w)} , if the two objects are moving in the same direction.
v r e l = v − ( − w ) {\displaystyle \,v_{rel}=v-(-w)} , si sos duos ogetos si sunt movende in diretziones opostas, o: v r e l = v − ( + w ) {\displaystyle \,v_{rel}=v-(+w)} , si sos duos ogetos si sunt movende in sa matessi diretzione.

In polar coordinates, a two-dimensional velocity is described by a radial velocity, defined as the component of velocity away from or toward the origin (also known as velocity made good), and an angular velocity, which is the rate of rotation about the origin (with positive quantities representing counter-clockwise rotation and negative quantities representing clockwise rotation, in a right-handed coordinate system).
In coordinadas polares, una velotzidade bidimensionale est descrita dae una velotzidade radiale, definida comente a su cumponente de sa velotzidade a largu de, o cara a, s'orìgine (nòdida fintzas comente a velotzidade currigida), e una velotzidade angulare, chi est su tassu de rotatzione a fùrriu a s'orìgine (cun cantidades positivas chi rapresentant sa rotatzione in sensu antioràriu e cantidades negativas chi rapresentant sa rotatzione in sensu oràriu, in unu sistema de coordinadas cara a dresta).

The radial and angular velocities can be derived from the Cartesian velocity and displacement vectors by decomposing the velocity vector into radial and transverse components.
Sas velotzidades radiales e angulares podent èssere derivadas dae sos vetores de velotzidade e mudamentu cartesianos mediante sa decumpositzione de su vetore de velotzidade in cumponentes radiales e trasversales.

The transverse velocity is the component of velocity along a circle centered at the origin.
Sa velotzidade trasversale est su cumponente de sa velotzidade longu unu chircu atzentradu in s'orìgine.

where
ue

v T {\displaystyle {\boldsymbol {v}}_{T}} is the transverse velocity v R {\displaystyle {\boldsymbol {v}}_{R}} is the radial velocity.
v T {\displaystyle {\boldsymbol {v}}_{T}} est sa velotzidade transversale v R {\displaystyle {\boldsymbol {v}}_{R}} est sa velotzidade radiale.

r {\displaystyle {\boldsymbol {r}}} is displacement.
r {\displaystyle {\boldsymbol {r}}} est mudamentu.

The magnitude of the transverse velocity is that of the cross product of the unit vector in the direction of the displacement and the velocity vector.
Sa mannaria de sa velotzidade trasversale est cussa de su produtu vetoriale de su vetore unitàriu in sa diretzione de su mudamentu e de su vetore de velotzidade.

It is also the product of the angular speed ω {\displaystyle \omega } and the magnitude of the displacement.
Est fintzas su produtu de sa velotzidade angulare \omega\ e de sa grandesa de su mudamentu.

such that
in manera chi

Angular momentum in scalar form is the mass times the distance to the origin times the transverse velocity, or equivalently, the mass times the distance squared times the angular speed.
Su momentu angulare in forma iscalare est sa massa multiplicada pro sa distàntzia a s'orìgine multiplicada pro sa velotzidade trasversale, o in manera ecuivalente, sa massa pro sa distàntzia cuadrada multiplicada pro sa velotzidade angulare.

The sign convention for angular momentum is the same as that for angular velocity.
Sa cunventzione de sinnu pro su momentu angulare est sa matessi de cussa pro sa velotzidade angulare.

m {\displaystyle m\,} is mass r = ‖ r ‖ . {\displaystyle r=\|{\boldsymbol {r}}\|.}
m {\displaystyle m\,} est sa massa r = ‖ r ‖ . {\displaystyle r=\|{\boldsymbol {r}}\|.}

The expression m r 2 {\displaystyle mr^{2}} is known as moment of inertia.
S'espressione m r 2 {\displaystyle mr^{2}} est connota comente a momentu de inèrtzia.

If forces are in the radial direction only with an inverse square dependence, as in the case of a gravitational orbit, angular momentum is constant, and transverse speed is inversely proportional to the distance, angular speed is inversely proportional to the distance squared, and the rate at which area is swept out is constant.
Si sas fortzas sunt in sa diretzione radiale petzi cun una dipendèntzia cuadratica inversa, comente a su casu de un'òrbita gravitatzionale, su momentu angulare est costante e sa velotzidade trasversale est inversamente proportzionale a sa distàntzia, sa velotzidade angulare est inversamente proportzionale a sa distàntzia a su cuadradu e sa velotzidade cun sa cale s'àrea benit mundada est costante.