# nl/26WoG8tT97tg.xml.gz
# or/26WoG8tT97tg.xml.gz


(src)="1"> Er is een Chinees woord , ' xiang ' , dat iets betekent als
(src)="2"> ' ruikt goed ' .
(src)="3"> Het kan slaan op een bloem , eten , eigenlijk alles .
(trg)="1"> ଚିନୀୟରେ ଏହି ଶଦ୍ଦର ରହିଛି " କ୍ସିଆଙ୍ଗ୍ " ସେହି ପ୍ରକାରର ଅର୍ଥ ଭଲ ବାସନା ହେଉଛି ଏହା ଏକ ଫୁଲ , ଖାଦ୍ୟ , ଯେକୌଣସି ବି ଦର୍ଶାଇ ପାରିବ କିନ୍ତୁ ଏହା ସର୍ବଦା ଦ୍ରବ୍ୟଗୁଡିକ ପାଇଁ ଏକ ଯୁକ୍ତାତ୍ମକ ବିବରଣୀ ଅଟେ ମେନଡାରିନ୍ ବ୍ୟତିତ ଏହା ଅନୁବାଦ କରିବାକୁ କଷ୍ଟକର ଅଟେ ଫିଜି- ହିନ୍ଦୀରେ ଆମ ପାଖରେ ଏହି ଶଦ୍ଦ ଅଛି ଯାହାକୁ " ତାଲାନୋଆ " କୁହାଯାଏ ପ୍ରକୃତରେ ଏହା ଆପଣ ପାଉ ଥିବା ଅନୁଭବ , ଏକ ଶୁକ୍ରବାର ରାତ୍ରିରେ ଅଟେ , ଆପଣଙ୍କର ସାଙ୍ଗଗଣଙ୍କର ଦ୍ଵାରା ପରିପାର୍ଶ୍ଵ ହୋଇଛି ସମୀର ସୁଟ୍ କରୁଛି , କିନ୍ତୁ ଏହା ପ୍ରକୃତରେ ତାହା ନୁହେଁ , ଏହା ଉଚ୍ଛାହକ ଏବଂ ବନ୍ଧୁତ୍ଵପୂର୍ଣ୍ଣ ସଂସ୍କରଣ ଅଟେ ସ୍ଵଳ୍ପ କଥାବାର୍ତ୍ତାର ପ୍ରତ୍ୟେକ ସମ୍ଵନ୍ଧରେ ଯାହା ଆପଣ ଭାବୁଛନ୍ତି ଆପଣଙ୍କର ମସ୍ତିଷ୍କର ଉପରେ ଏହି ଗ୍ରୀକ୍ ଶଦ୍ଦ ରହିଛି , " ମେରକି " ଆପଣଙ୍କର ମସ୍ତିଷ୍କର ଉପରେ ଆପଣଙ୍କର ପ୍ରାଣ ରଖିବା , ଆପଣଙ୍କ ରଖିବା ତାହା ଆପଣଙ୍କର ହେଲେ ମଧ୍ୟ , ସମସ୍ତ ଆପଣ ଯାହା କରୁଛନ୍ତି ତାହା ଇଚ୍ଛା କିମ୍ଵା ଏହା ଆପଣଙ୍କର କାର୍ଯ୍ୟ ଆପଣ ତାହା ଆପଣ ଶ୍ରଦ୍ଧାର ସହିତ କରୁଛନ୍ତି ଯାହା ଆପଣ ଅଟନ୍ତି କରୁଛି କିନ୍ତୁ ଏହା ସେହି ସାଂସ୍କୃତିକ ମଧ୍ୟରୁ ଏକ ଅଟେ , ମୁଁ କେବେ ବି ଏକ ଭଲ ଅନୁବାଦ ସହିତ ଆସିବାକୁ ସାମର୍ଥ୍ୟ ହୋଇନାହିଁ

(src)="13"> ' Meraki ' , met passie , met liefde .
(trg)="2"> " ମେରାକି , " ଇଚ୍ଛା ସହିତ , ପ୍ରମ ସହିତ

# nl/C0arftqsv79h.xml.gz
# or/C0arftqsv79h.xml.gz


(src)="1"> We zijn aangekomen bij probleem 27 .
(src)="2"> En de vraag is , welke vergelijking representeert het beste de grafiek hier boven ?
(src)="3"> Maar voordat we naar de mogelijkheden kijken , laten we eerst verder kijken naar de grafiek .
(trg)="2"> Ame 27 number problem re achhu . ebong question heuchhi , keun prasna ti upara graph pain upajukta tenu uttara dekhiba agaru , dekha jan âme kana kana âge bahara kari pariba , ehi graph ru kahi pariba ki , ehi graph ra y- axis ta kauthi pain ? jade line ra equation ti heuchhi y equal to mx jukta b , taha hele m heuchhi slope , au b heuchhi y- axis re jeuthi cut heuchhi setika bhaga .

(src)="6"> Het is laat .
(src)="7"> Ik begin een beetje verward te worden .
(src)="8"> Dus wat is het snijpunt met de y- as ?
(trg)="3"> tikie late hoi gala , au tikiye confusing bi hoi jauchhi . kahipariba ki y- axis cut ra bhagata kete ?

(src)="9"> Nou , wanneer x gelijk is aan 0 , y is gelijk aan 0 .
(trg)="4"> Jetebele x is equal to 0 , y is equal to 0 .

(src)="10"> Dus dit zal gelijk zijn aan 0 .
(trg)="5"> Setebele eita 0 hoi jiba .

(src)="11"> Het snijpunt met de y- as is 0 .
(trg)="6"> Y- axis cut bhagata sete bele 0 .

(src)="12"> Waneer x gelijk is aan 0 , dan is y gelijk aan 0 .
(trg)="7"> Jete bele x is equal to 0 , sete bele y- intercept ta 0 kahinki heuchhi ?

(src)="13"> Dus het snijpunt met de y- as is 0 .
(trg)="8"> Y- intercept ta 0 .

(src)="14"> Dus nu weten we dat dit een vorm heeft van y is gelijk aan mx waarbij m een helling is .
(trg)="9"> Tenu âme janichhu je ei équation ta y is equal to mx ra form heba , jauthiki m is a slope .
(trg)="10"> Slope ti ku bahara kariba .

(src)="16"> De helling is gelijk aan de verandering in y voor een gegeven verandering in x oftewel verandering in y over een verandering in x .
(trg)="11"> Slope is heuchhi y ra kete change heuchhi , jete bele x ra tikiye change heuchhi .

(src)="17"> Dus wanneer we x verhogen met 1 , hoeveel verhogen we -- of verlagen we y ?
(trg)="12"> jete bêle âme x ku 1 unit change kariba , sete bele y re kete change heuchhi ? y kete unit badhuchhi kimba kamuchhi ?

(src)="18"> Nou , y wordt verhoogd met 2 .
(trg)="13"> Y sete bele 2 unit badhi jauchhi .

(src)="19"> Dus we kunnen zeggen dat als y met 2 verandert , met 2 toeneemt , dan verandert x met plus 1 .
(trg)="14"> Tenu âme kaki pariba je , jeté bele x re 1 unit change heuchi , sete bele y re 2 unit change heuchhi .
(trg)="15"> Tenu ama kahi pariba he slope it 2 .

(src)="20"> Dus we krijgen een helling gelijk aan 2 , dus de vergelijking van deze
(trg)="16"> Tenu line ra equation heuchhi y is equal to 2x .

(src)="22"> Wat keuze B is .
(trg)="17"> Jeun ta ki choice B .

(src)="23"> Volgende opgave .
(src)="24"> Welk punt ligt op de lijn gedefinieerd door 3x plus 6y is gelijk aan 2 ?
(trg)="18"> Para question ta heuchhi kau point ta line 3x plus 6y equal to 2 upare paduchi ?

(src)="25"> Nou , het beste om hier te doen is waarschijnlijk deze getallen te substitueren voor x en y en te kijken welke werkt .
(trg)="19"> Sei ta bahariba karibara best upaya heuchhi , x au y ku ei numbers gudakare replace kari dekhiba .

(src)="26"> Dus hier is x 0 en y is 2 .
(src)="27"> Laten we kijken .
(src)="28"> 3 keer 0 plus 6 keer 2 is gelijk aan 0 plus 12 .
(trg)="20"> Tenu jadi âme x is 0 and y is 2 kariba taha hele 3 gunana 0 jukt 6 gunana 2 samana 0 jukta 12 .

(src)="29"> Dat is niet gelijk aan 2 , maar het is gelijk aan 12 .
(trg)="21"> 2 sahita samana nuhe , 12 sahi ta samana heuchhi .

(src)="30"> Deze werkt niet .
(trg)="22"> Eita thik kama karuni .

(src)="31"> Ik neem gewoon 3 keer x plus 6 keer y en kijk waaraan het gelijk is .
(trg)="23"> Mun just 3 gunana x junta 6 gunana y kari ki dekhuchhi seita kete heuchhi .

(src)="32"> In dit geval hebben we 3 keer 0 plus 6 keer y .
(src)="33"> Plus 6 keer 6 .
(src)="34"> Nou , dat is 0 plus 36 .
(trg)="24"> Ei case re ama pakhare 3 gunana 0 jukta 6 gunana y jukta chhaa gunana 6 . jeunta ki 9 jukta 36 . seita 2 sahi ta samana nuhe .

(src)="36"> Het kan niet die keuze zijn .
(src)="37"> Deze , we hebben 3 , deze 3 , keer 1 .
(src)="38"> Plus 6 keer deze y .
(trg)="25"> seita thin choice heba ni . ei ta , ama pakhare 3 , ei ta 3 gunana 1 jukta 6 gunana y 6 gunana negative 1/ 6 tenu dekha jau ei ta 3 . seita 3 sahita saman . ta pare , 6 gunana 1/ 6 is 1 , kintu sethare minus rahichhi . tenu seita minus 1 . seita 2 sahita saman heuchhi . seita thik laguchhi .

(src)="47"> 3 keer 1 plus 6 keer min 1/ 6 is gelijk aan 2 .
(trg)="26"> 3 gunana 1 jukta 6 gunana negative 1/ 6 2 sahita saman .

(src)="48"> Dus ons antwoord is C.
(trg)="27"> Tenu amarre answer heuchhi C .

(src)="49"> Opgave 29 .
(trg)="28"> Problem 29 .

(src)="50"> Laat me kijken of ik deze erin moet plakken .
(trg)="29"> Dekha jauchu mote cut and paste kari baku padi ba ki .

(src)="51"> Oké .
(trg)="30"> Thik achi .

(src)="52"> Dus ja , ik denk dat het een goed idee is .
(trg)="31"> Laguchhi , ei ta good idea .

(src)="53"> Laat me kijken .
(src)="54"> Knippen en plakken .
(trg)="32"> Dekha jau . copy au paste karuchhi .

(src)="55"> Laat me de volgende opgaves erin plakken .
(trg)="33"> Mote copy and paste kariba ku diya . just move kara .

(src)="56"> We kunnen gewoon verplaatsen -- er gestroomlijnd over zijn .
(trg)="34"> Thik thak rasta dhara .

(src)="57"> Oké , ze passen allemaal .
(trg)="36"> Good , bhala dekha jauchhi .

(src)="59"> Wat is de vergelijking van de lijn met helling 4 en dat door punt 3 komma min 10 gaat ?
(trg)="38"> Jete bele slope ti 4 , sete bele ame line ra y- intercept formula re equation la lekhiba jeuta ki y equal to mx plus b .

(src)="61"> Ze vertellen ons dat de helling 4 is .
(src)="62"> Dus we weten dat de vergelijking van de lijn is y is gelijk aan 4x plus het snijpunt met de y- as .
(trg)="39"> semane amaku kahuchhanti , slope ti 4 . tenu line ra equation heuchhi y is equal to 4x junta the y- intercept .

(src)="63"> En dan kunnen we het snijpunt met de y- as vinden door het punt in te vullen waarvan ze zeggen dat het doorheen gaat .
(trg)="40"> Ta pare âme y- intercept ta jani pariba kau point through re jauchhi seti point re sasei ki .

(src)="64"> Dus het gaat door het punt 3 komma min 10 .
(trg)="41"> Ei line ti jauchhi point 3 au negative 10 thorugh deiki jauchhi .

(src)="65"> Dus y is gelijk aan min 10 als x gelijk is aan 3 .
(src)="66"> Dus 4 keer x . x is gelijk aan 3 . plus b .
(src)="67"> Dus wat is dat ?
(trg)="42"> Tenu y heuchhi minus 10 , jete bele ki x heuchhi 3 . tenu x ra 4 guna , x heuchhi 3 . jukta b . tenu seita kete ?

(src)="68"> Dat is min 10 is gelijk aan 12 plus b .
(src)="69"> We kunnen 12 van beide kanten van de vergelijking aftrekken , dan krijgen we min 22 .
(trg)="43"> Seita heuchhi minus 10 is equal to 12 jukta b . ame 12 ku bijukta kariba dui patu au amaku miliba 22 .

(src)="70"> Min 10 min 12 is min 22 .
(src)="71"> Deze 12 gaat duidelijk weg .
(src)="72"> Is gelijk aan b .
(trg)="44"> Minus 10 minus 12 heuchhi minus 22 . ei 12 tiye dui patu gala . jeuta ki b . tenu amara line ra equation heuchi 4x jukta b . jauta ki ama bahara karichhi minus 22 .

(src)="74"> 4x min 22 .
(trg)="45"> 4x mins 22 .

(src)="75"> Dat is keuze A.
(trg)="46"> Tenu choice heuchi A .

(src)="76"> Opgave 30 .
(trg)="47"> Problem 30 .

(src)="77"> De gegevens in de tabel geven de kosten voor het uren van een fiets weer per uur , inclusief een borgsom .
(trg)="48"> Table re tarikha dekheuchhi bi- cycle rent kariba ku kete tanka lagiba ?

(src)="78"> If de uren , h , uit zijn gezet op de horizontale as -- laat me kijken of ik dat kan tekenen .
(trg)="49"> Jadi hours heba h , jeuta ku ame horizontal axis re draw kariba .

(src)="79"> Dus ik heb uren , h , op de horizontale as .
(trg)="50"> Eita heuchi h .

(src)="81"> En de kosten zijn uitgezet op de verticale as , dus laat me de verticale as tekenen .
(trg)="51"> Cost taku âme vertical axis re draw kariba .

(src)="82"> Dus kosten staan op de verticale as .
(trg)="52"> Tenu line equation kauthire fit heba ?

(src)="84"> Oké , dus ze willen gewoon de kosten als een functie van de uren weten .
(src)="85"> Laten we kijken .
(src)="86"> Het is een lineair verband .
(trg)="53"> tenu semane jani baku chahuchhanti cost ta hours ra function re kemiti heba . dekha jau . eita sidha line formula heba .