# gu/01fktUkl0vx8.xml.gz
# ko/01fktUkl0vx8.xml.gz


(src)="1"> અંકગણિત આપણે ૬૫ અને ૧ નો ગુણાકાર કરવાનો છે શાબ્દિક અર્થ અનુસાર , આપણે ૬૫ નો ગુણાકાર કરવાની જરૂર છે . ગુણાકાર ને , ગુણાકાર ના ચિન્હ ( x ) અથવા તો બિંદુ ( . ) તરીકે પણ લખી શકાય . આવી રીતે -- આનો અર્થ ૬૫ ગુણ્યા ૧ જ થાય . પણ આનો અર્થ બે રીતે કરી શકાય તમે ૬૫ને એકવાર જોઈ શકો અથવા ૧ ને ૬૫ વાર જોઈ ને બધાનો સરવાળો કરી શકો કોઈ પણ રીતે , તમારી પાસે ૧ , ૬૫ નો આંકડો હોય તો વસ્તુત : એને ૬૫ જ ગણાય કોઈપણ આંકડા ને ૧ વડે ગુણવાથી એજ આંકડો મળે પછી તે કોઈપણ આંકડો હોય જે પણ આંકડો ૧ થી ગુણાય તે તેજ આંકડો રહે હું જો અહીંયા કોઈપણ અજ્ઞાત સંખ્યાને એક થી ગુણ્યા કરું હું એમાં ગુણાકારનું ચિન્હ પણ મૂકી દઉં તો પણ મને તેની તેજ અજ્ઞાત સંખ્યા મળે જો હું ૩ ગુણ્યા ૧ કરું તો મને ૩ મળે જો હું ૫ ગુણ્યા ૧ કરું તો મને ૫ મળે આનો એટલો જ અર્થ થાય કે , એક ૫ વાર જો હું , ધારોકે -- ૧૫૭ ગુણ્યા ૧ કરું , તો જવાબ ૧૫૭ જ રહે તમને ખ્યાલ આવી ગયો હશે .
(trg)="1"> 65 곱하기 1을 하라고 합니다 .
(trg)="2"> 문자 그대로 , 우리는 65에 곱하기 기호 혹은 점으로 곱셈을 표시할 수 있겠습니다 . 어떻게 하든 65 곱하기 1을 의미합니다 .
(trg)="3"> 문자 그대로 , 우리는 65에 곱하기 기호 혹은 점으로 곱셈을 표시할 수 있겠습니다 . 어떻게 하든 65 곱하기 1을 의미합니다 .

# gu/0HgfeWgB8T8n.xml.gz
# ko/0HgfeWgB8T8n.xml.gz


(src)="1"> ૧૫, ૬ અને ૧૦ નો લઘુત્તમ સામાન્ય અવયવી એટલે કે લસાઅ શુ છે ? લસાઅ એટલે લઘુત્તમ સામાન્ય અવયવી . અને અવયવી એટલે કે ગુણક . તો લસાઅ એટલે આ બધા આંકડા ઑ ના જે પણ અવયવી થાય તે બધા અવયવી માં નાનામાં નાનો અવયવી . અને હું માનું છું તમને ખબર ના પડી . તો ચાલો આ પ્રશ્ન ઉકેલીએ . ચલો ૧૫ , ૬ અને ૧૦ ના જૂદા જૂદા અવયવી વિશે વિચારીએ . અને પછી તેમાનો નાનામા નાનો સામાન્ય અવયવી શોધીએ . તો ચલો ૧૫ ના અવયવી એટલે કે ગુણકો શોધીએ . તે , ૧૫ ગુણ્યા ૧ એટલે ૧૫ , ૧૫ ગુણ્યા ૨ એટલે 30 થાય . તમે ૩૦ માં ૧૫ ઉમેરો તો તમને ૪૫ મળશે , બીજા ૧૫ ઉમેરો ૬૦ મળશે , ૧૫ ઉમેરો ૭૫ મળશે , ૧૫ ઉમેરો ૯૦ મળશે , ૧૫ ઉમેરો ૧૦૫ મળશે અને જો આ બધા અવયવી માં થી ઉપર ની સંખ્યા ઑ નો કોઈ સામાન્ય અવયવી નથી તો તમારે હજિ આગળ કરવુ પડ્શે . પણ હુ અહિ થોભી જઈશ . તો આ બધા ૧૦૫ સુધી ના ૧૫ ના અવયવી છે , ચલો હવે ૬ ના અવયવી શોધીએ .
(trg)="1"> 15 , 6 , 10의 최소공배수를 구해봅시다
(trg)="2"> 최소공배수란
(trg)="3"> 가장 작은 공통의 배수를 말해요

(src)="2"> ૬ ના અવયવી એક વખત છ તે છ , બે વખત 6 તે 12, ત્રણ વખત 6 તે 18 , ચાર વખત 6 તે 24 , 5 વખત 6 તે 30 , 6 વખત તે 36 , 7 વખત 6 તે 42 , 8 વખત 6 તે 48 9 વખત 6 તે 54, 10 વખત તે 60 .
(trg)="13"> 이제부터 6의 배수를 구해봅시다
(trg)="14"> 6의 배수는 6 , 12 , 18 , 24
(trg)="15"> 30 , 36 , 42 , 48이죠

(src)="3"> ૬૦ એ રસપ્રદ છે તે ૧૫ અને ૬ નો સામાન્ય અવયવી છે . પણ આપણે પાસે અહીં ૨ અવયવી છે . આપણી પાસે અહીં ૩૦ છે અને અહીં પણ ૩૦ છે . એક ૬૦ અને બીજા ૬૦ . તેથી આપણી પાસે ૩૦ અને ૬૦ એમ બે સામાન્ય અવયવી છે . જો આપણે 15 અને 6 નો નાનામાં નાનો સામાન્ય અવયવી જોઈતો હોય તો , તે ૩૦ છે . તો ૧૫ અને ૬ નો લસાઅ ૩૦ થાય . નાનામાં નાનો અવયવી અહી આપણે જોઈ શકીએ છીએ કે તે 30 છે 2 વખત 15 તે 30 અને 5 વખત 6 તે 30 . તેથી આ ચોક્કસ સામાન્ય અવયવી છે અને બંનેના બધા અવયવીમાં નાનામાં નાનો છે .
(trg)="17"> 15와 6의 공배수가 2개 보이네요
(trg)="18"> 30과 60이죠 15와 6만 생각하면
(trg)="19"> 두 수의 최소공배수는 30이네요

(src)="4"> 60 પણ સામાન્ય અવયવી છે પણ તે મોટો છે . અહી 30 તે સૌથી નાનો અવયવી છે આપણે 10 લીધા નથી ચાલો 10 અહી લઈએ . હું માનું છું કે તમે સમજો છો કે આપણે શું કરવા જઈ રહ્યા છીએ ચાલો 10 ના અવયવી લઈએ, 10, 20, 30 , 40 .... આપણે વધારે આગળ આવી ગયા . આપણને ૩૦ મળ્યા જ છે .
(trg)="22"> 15와 6의 공배수들 중 가장 작은 수입니다
(trg)="23"> 60도 공배수이지만 30보다 크니까 최소공배수는 30이죠
(trg)="24"> 이제 10의 배수도 적어볼게요

(src)="5"> ૩૦ એ ૧૫ અને ૬ ના સામાન્ય અવયવી છે અને તે નાના મા નાનો સામાન્ય અવયવી છે . તેથી ૧૫, ૬ અને ૧૦ નો લસાઅ = ૩૦ થાય . સામાન્ય અવયવી છે . આ એક રીત છે લઘુત્તમ અવયવી શોધવાની . એટલે કે દરેક સંખ્યાના અવયવી શોધો અને સરખાવો . અને જુઓ કે તેમની વચ્ચે નાનામાં નાનો સામાન્ય અવયવી કયો છે . ચલો હવે બિજી રીતથી કરીએ , કે જે અવિભાજ્ય અવયવ ની રીત છે અને લસાઅ તે એ સંખ્યા છે જેના ઘટકો તે આ સંખ્યાઓ ના અવિભાજ્ય અવયવ ધરાવે છે તો મને બતાવવા દો કે તેનો મતલબ શુ થાય . તો તમે તે આવી રીતે કરી શકો , ૧૫ એ ૩ x ૫ ની સમાન છે .
(trg)="26"> 이 중 15와 6의 최소공배수인 30이 있으니까
(trg)="27"> 15 , 6 , 10의 최소공배수는 30이에요
(trg)="28"> 지금까지 설명한 방법은 각 숫자의 배수를

(src)="6"> ૩ અને ૫ બન્ને અવિભાજ્ય સંખ્યા છે .
(trg)="33"> 15는 소수 3 x 5 이죠 이 때 3과 5를 15의 소인수라고 합니다

(src)="7"> ૬ એ એ જ રીતે ૨ * 3 છે અને , ૨ અને ૩ અવિભાજ્ય છે . આપણે કહી શકીએ કે 10 તે 2 વખત 5 છે . બંને 2 અને 5 અવિભાજ્ય છે . તેથી આપણે 10 ના અવિભાજ્ય અવયવો મળી ગયા . તો ૧૫ , ૬ અને ૧૦ નો લસાઅ માં આ બધા અવિભાજ્ય અવયવો હોવા જોઈએ . એટલે કે હું એમકહેવા માંગું છું કે , લસાઅ ને 15 વડે ભાગી શકાય તેવો હોવા માટે , લસાઅ ના અવિભાજ્ય અવયવ માં ઓછા માં ઓછા એક 3 અને એક 5 હોવા જોઈએ . એટલે કે ઓછા માં ઓછા એક 3 અને એક 5 જોઈએ 3 અને 5 અવિભાજ્ય હોવાથી એમ કહી શકાય કે તે સંખ્યા 15 વડે ભાગી શકાય લસાઅ ને 6 વડે ભાગી શકાય તેના ઓછા માં ઓછા 2 અને 3 અવિભાજ્ય અવયવો હોવા જોઈએ . આપણી પાસે ૩ તો છે જ . આપણને માત્ર એક જ 3 જોઈએ તેથી એક 2 અને એક 3 . તે 3 ગુણ્યા 2 એટલે 6 . એટલે કે આપનો લસાઅ એ 6 વડે ભાગી શકાય તેવો છે . અને અહી 15 છે . અને હવે 10 વડે ભાગાકાર થઇ શકે તે માટે ઓછા માં ઓછો એક 2 અને એક 5 હોવો જોઈએ . અહી 2 હોવા તે જરૂરી છે . તેથી ૨ * ૩ * ૫ મા ૧૦ , ૬ અને ૧૫ ના બધા અવિભાજ્ય અવયવો છે અને તેથી તે આપનો લસાઅ છે . તેથી જો આપણે ગુણાકાર કરીએ તો આપણને
(trg)="34"> 6은 2 x 3 이고 , 이처럼 소인수의 곱으로 표현하는 것을 소인수분해라고 합니다
(trg)="35"> 같은 방법으로 10을 소인수분해하면 2 x 5 죠
(trg)="36"> 15 , 6 , 10의 최소공배수는 소인수들의 곱으로 구할 수 있어요

(src)="8"> ૨ * ૩ = ૬ અને ૬ * ૫ = ૩૦ મળે .
(trg)="49"> 소인수들을 한 번씩 곱한

(src)="9"> બન્ને રીતમા આપણને સમાન સંખ્યા જ મળી . અને તમે જોઈ શકો છો કે તે કઈ રીતે સાચું મળે છે . જો તમે ઘણી જટિલ સંખ્યાઓ માટે ગણતરી કરો તો આ બીજી રીતે વધારે સારી છે એવી સંખ્યા ઑ માટે કે જેમાં તમારે લાંબો ગુણાકાર કરવાનો હોય . સારું , પણ બંને માંથી કોઈપણ રીત લસાઅ શોધવા માટે ની સાચી રીત છે .
(trg)="50"> 2 x 3 x 5인 30이란 걸 알 수 있습니다
(trg)="51"> 두 방법 모두 사용할 수 있지만
(trg)="52"> 두 번째 방법이 숫자가 더 복잡해졌을 때

# gu/0Q3fwpNahN56.xml.gz
# ko/0Q3fwpNahN56.xml.gz


(src)="1"> દાખલો જે પહેલાં કર્યો તે ગુણાકાર હતો . સ્વાગત છે આપનું , નકારાત્મક સંખ્યાઓના ગુણાકાર અને ભાગાકાર ના વિડીઓમાં ચાલો શરૂ કરીએ . મને લાગે છે કે તમને નકારાત્મક સંખ્યાઓના ગુણાકાર અને ભાગાકાર છે તે કરતાં ઘણાં સરળ જણાશે
(src)="2"> જે હું તમને સરળતાથી સમજાવીશ
(trg)="4"> 훨씬 쉬워질 것입니다

(src)="3"> તો આના મૂળભૂત નિયમો છે કે જયારે તમે બે નકારાત્મક સંખ્યાઓને ગુણો , જેમકે નકારાત્મક ૨ ગુણ્યા નકારાત્મક ૨ . તો પહેલાં એ સમજો કે બેય સંખ્યાઓમાં નકારાત્મક સંજ્ઞા છેજ નહિ અને તે પ્રમાણે , ૨ ગુણ્યા ૨ બરાબર ૪ . અને અહિયા એવું થશે કે નકારાત્મક ગુણ્યા નાકારતમાં , બરાબર સકારાત્મક . તો ચાલો પહેલો નિયમ લખીએ . એક નકારાત્મક ગુણ્યા એક નકારાત્મક બરાબર એક સકારાત્મક .
(trg)="8"> 음수와 음수를 곱할때 ,
(trg)="9"> - 2 x ( - 2 ) 를 해 봅시다
(trg)="10"> 두 수를 각각 부호가 없는 것처럼

(src)="4"> નકારાત્મક ૨ ગુણ્યા સકારાત્મક ૨ હોય તો શું થાય ? એ સંજોગમાં , ચાલો પહેલાં જોઈએ કે બેઉ સંખ્યાઓ ને વગર સંજ્ઞાએ જોઈએ આપણને ખ્યાલ છે કે ૨ ગુણ્યા ૨ બરાબર ૪ થાય . પણ અહિયાં એક નકારાત્મક અને એક સકારાત્મક ૨ છે , અને તેનો મતલબ એ કે , જયારે એક નકારાત્મક ને ગુણો એક સકારાત્મક સાથે તો તમને એક નકારાત્મક મળે છે . તો એ છે બીજો નિયમ . નકારાત્મક ગુણ્યા સકારાત્મક બરાબર નકારાત્મક . સકારાત્મક ૨ ગુણ્યા નકારાત્મક ૨ નો જવાબ શું આવે ? મને લાગે છે કે તમે આનો ખરો અંદાજ લગાવી શકશો , કેમકે આ બન્ને સરખા હોઈ મારા ખ્યાલ થી તે સકર્મક ગુણ છે , ના , ના મને લાગે છે કે તે વહેવારિક ગુણ છે મારે આને યાદ રાખવું પડશે પણ ૨ ગુણ્યા નકારાત્મક ૨ , તે નકારાત્મક ૪ બરાબર છે . તો અહિયાં છે છેલ્લો નિયમ , કે સકારાત્મક ગુણ્યા નકારાત્મક પણ નકારાત્મક બરાબર હોય છે . અને આ છેલ્લા બે નિયમો , એક રીતે સરખા છે . એક નકારાત્મક ગુણ્યા સકારાત્મક એ નકારાત્મક , અથવા એક સકારાત્મક ગુણ્યા નકારાત્મક પણ નકારાત્મક . તમે એમ પણ કહી શકો કે જયારે બન્ને સંજ્ઞાઓ અલગ હોય , અને તેનાં ગુણાકાર કરો , તો તમને એક નકારાત્મક સંખ્યા મળશે . અને તમને પહેલાથીજ ખ્યાલ હશે કે સકારાત્મક ગુણ્યા સકારાત્મક તે તો સકારાત્મક જ હોય . તો ચાલો ફરી એક વાર જોઈએ નકારાત્મક ગુણ્યા નકારાત્મક એટલે સકારાત્મક નકારાત્મક ગુણ્યા સકારાત્મક એટલે નકારાત્મક સકારાત્મક ગુણ્યા નકારાત્મક એટલે નકારાત્મક અને સકારાત્મક ગુણ્યા સકારાત્મક બરાબર સકારાત્મક . મને લાગે છે કે છેલ્લે તમે મુંઝવાયા હશો તો હું તેને તમારા માટે સરળ બનાવું જો હું તમને કહું કે જયારે તમે ગુણાકાર કરો છો ત્યારે બન્ને સરખી સંજ્ઞાઓ નો જવાબ હમેશા સકારાત્મક હોય . અને બન્ને જુદી સંજ્ઞાઓ નો જવાબ નકારાત્મક હોય
(trg)="17"> - 2 x 2 는 얼마입니까 ?
(trg)="18"> 우선 부호에 상관없이
(trg)="19"> 계산을 합니다