# gu/01fktUkl0vx8.xml.gz
# ja/01fktUkl0vx8.xml.gz


(src)="1"> અંકગણિત આપણે ૬૫ અને ૧ નો ગુણાકાર કરવાનો છે શાબ્દિક અર્થ અનુસાર , આપણે ૬૫ નો ગુણાકાર કરવાની જરૂર છે . ગુણાકાર ને , ગુણાકાર ના ચિન્હ ( x ) અથવા તો બિંદુ ( . ) તરીકે પણ લખી શકાય . આવી રીતે -- આનો અર્થ ૬૫ ગુણ્યા ૧ જ થાય . પણ આનો અર્થ બે રીતે કરી શકાય તમે ૬૫ને એકવાર જોઈ શકો અથવા ૧ ને ૬૫ વાર જોઈ ને બધાનો સરવાળો કરી શકો કોઈ પણ રીતે , તમારી પાસે ૧ , ૬૫ નો આંકડો હોય તો વસ્તુત : એને ૬૫ જ ગણાય કોઈપણ આંકડા ને ૧ વડે ગુણવાથી એજ આંકડો મળે પછી તે કોઈપણ આંકડો હોય જે પણ આંકડો ૧ થી ગુણાય તે તેજ આંકડો રહે હું જો અહીંયા કોઈપણ અજ્ઞાત સંખ્યાને એક થી ગુણ્યા કરું હું એમાં ગુણાકારનું ચિન્હ પણ મૂકી દઉં તો પણ મને તેની તેજ અજ્ઞાત સંખ્યા મળે જો હું ૩ ગુણ્યા ૧ કરું તો મને ૩ મળે જો હું ૫ ગુણ્યા ૧ કરું તો મને ૫ મળે આનો એટલો જ અર્થ થાય કે , એક ૫ વાર જો હું , ધારોકે -- ૧૫૭ ગુણ્યા ૧ કરું , તો જવાબ ૧૫૭ જ રહે તમને ખ્યાલ આવી ગયો હશે .
(trg)="1"> 65 x 1 の乗算をするように求めています。
(trg)="2"> 文字通り、 65 を乗算する必要があります。
(trg)="3"> 掛け算をドットの点として書くことができます。

# gu/0HgfeWgB8T8n.xml.gz
# ja/0HgfeWgB8T8n.xml.gz


(src)="1"> ૧૫, ૬ અને ૧૦ નો લઘુત્તમ સામાન્ય અવયવી એટલે કે લસાઅ શુ છે ? લસાઅ એટલે લઘુત્તમ સામાન્ય અવયવી . અને અવયવી એટલે કે ગુણક . તો લસાઅ એટલે આ બધા આંકડા ઑ ના જે પણ અવયવી થાય તે બધા અવયવી માં નાનામાં નાનો અવયવી . અને હું માનું છું તમને ખબર ના પડી . તો ચાલો આ પ્રશ્ન ઉકેલીએ . ચલો ૧૫ , ૬ અને ૧૦ ના જૂદા જૂદા અવયવી વિશે વિચારીએ . અને પછી તેમાનો નાનામા નાનો સામાન્ય અવયવી શોધીએ . તો ચલો ૧૫ ના અવયવી એટલે કે ગુણકો શોધીએ . તે , ૧૫ ગુણ્યા ૧ એટલે ૧૫ , ૧૫ ગુણ્યા ૨ એટલે 30 થાય . તમે ૩૦ માં ૧૫ ઉમેરો તો તમને ૪૫ મળશે , બીજા ૧૫ ઉમેરો ૬૦ મળશે , ૧૫ ઉમેરો ૭૫ મળશે , ૧૫ ઉમેરો ૯૦ મળશે , ૧૫ ઉમેરો ૧૦૫ મળશે અને જો આ બધા અવયવી માં થી ઉપર ની સંખ્યા ઑ નો કોઈ સામાન્ય અવયવી નથી તો તમારે હજિ આગળ કરવુ પડ્શે . પણ હુ અહિ થોભી જઈશ . તો આ બધા ૧૦૫ સુધી ના ૧૫ ના અવયવી છે , ચલો હવે ૬ ના અવયવી શોધીએ .
(trg)="2"> 最小公倍数(LCM)とはその言葉の示す通り, これらの数の倍数のなかで一番小さなものです.
(trg)="3"> しかし最小公倍数とは何かと聞かれて,「最小の公倍数」では答えになっていませんね.問題を実際にやってみてどんなものか見てみましょう.
(trg)="4"> そのために,15, 6, 10 の倍数をいくつか考えてみます.

(src)="2"> ૬ ના અવયવી એક વખત છ તે છ , બે વખત 6 તે 12, ત્રણ વખત 6 તે 18 , ચાર વખત 6 તે 24 , 5 વખત 6 તે 30 , 6 વખત તે 36 , 7 વખત 6 તે 42 , 8 વખત 6 તે 48 9 વખત 6 તે 54, 10 વખત તે 60 .
(trg)="13"> 1 かける 6 は 6,2 かける 6 は 12, 3 かける 6 は 18,4 かける 6 は 24.
(trg)="14"> 5 かける 6 は 30,6 かける 6 は 36,7 かける 6 は 42, 8 かける 6 は 48,
(trg)="15"> 9 かける 6 は 54,10 かける 6 は 60.60 でもうよさそうですね.なぜなら 15 の倍数には 60 があります. しかしここに既に2つの共通の倍数はあります.

(src)="3"> ૬૦ એ રસપ્રદ છે તે ૧૫ અને ૬ નો સામાન્ય અવયવી છે . પણ આપણે પાસે અહીં ૨ અવયવી છે . આપણી પાસે અહીં ૩૦ છે અને અહીં પણ ૩૦ છે . એક ૬૦ અને બીજા ૬૦ . તેથી આપણી પાસે ૩૦ અને ૬૦ એમ બે સામાન્ય અવયવી છે . જો આપણે 15 અને 6 નો નાનામાં નાનો સામાન્ય અવયવી જોઈતો હોય તો , તે ૩૦ છે . તો ૧૫ અને ૬ નો લસાઅ ૩૦ થાય . નાનામાં નાનો અવયવી અહી આપણે જોઈ શકીએ છીએ કે તે 30 છે 2 વખત 15 તે 30 અને 5 વખત 6 તે 30 . તેથી આ ચોક્કસ સામાન્ય અવયવી છે અને બંનેના બધા અવયવીમાં નાનામાં નાનો છે .
(trg)="16"> 30 がここにあって,ここにも30があります.60 がここにあり,60がここにあります.最小公倍数は
(trg)="17"> 15 と 6 についてだけ最小公倍数を考えれば,
(trg)="18"> それは 30 です.これを途中経過として 書いておきましょう.15 と 6 の最小公倍数.

(src)="4"> 60 પણ સામાન્ય અવયવી છે પણ તે મોટો છે . અહી 30 તે સૌથી નાનો અવયવી છે આપણે 10 લીધા નથી ચાલો 10 અહી લઈએ . હું માનું છું કે તમે સમજો છો કે આપણે શું કરવા જઈ રહ્યા છીએ ચાલો 10 ના અવયવી લઈએ, 10, 20, 30 , 40 .... આપણે વધારે આગળ આવી ગયા . આપણને ૩૦ મળ્યા જ છે .
(trg)="22"> 10 についてはまだ考えていません.ですから 10 について考えましょう.もうどうなるかわかった人もいるでしょう.
(trg)="23"> 10 の倍数を考えます.それは 10, 20, 30, 40... もう十分書きましたね.なぜならもう 30 があるからです.
(trg)="24"> そして 30 は 15 と 6 の公倍数であり, 全部の中で最小の公倍数です.

(src)="5"> ૩૦ એ ૧૫ અને ૬ ના સામાન્ય અવયવી છે અને તે નાના મા નાનો સામાન્ય અવયવી છે . તેથી ૧૫, ૬ અને ૧૦ નો લસાઅ = ૩૦ થાય . સામાન્ય અવયવી છે . આ એક રીત છે લઘુત્તમ અવયવી શોધવાની . એટલે કે દરેક સંખ્યાના અવયવી શોધો અને સરખાવો . અને જુઓ કે તેમની વચ્ચે નાનામાં નાનો સામાન્ય અવયવી કયો છે . ચલો હવે બિજી રીતથી કરીએ , કે જે અવિભાજ્ય અવયવ ની રીત છે અને લસાઅ તે એ સંખ્યા છે જેના ઘટકો તે આ સંખ્યાઓ ના અવિભાજ્ય અવયવ ધરાવે છે તો મને બતાવવા દો કે તેનો મતલબ શુ થાય . તો તમે તે આવી રીતે કરી શકો , ૧૫ એ ૩ x ૫ ની સમાન છે .
(trg)="25"> ですから 15, 6, 10 の LCM は 30 に等しいです.
(trg)="26"> これは最小公倍数をみつける1つの方法です. 文字通り,それぞれの数の倍数をみていき,
(trg)="27"> 共通のもので最小の倍数をみつけるという方法です.

(src)="6"> ૩ અને ૫ બન્ને અવિભાજ્ય સંખ્યા છે .
(trg)="32"> 6 は 2 かける 3 と同じことと言えます.これで終わりです.これがこの素因数分解です.なぜなら 2 と 3 は素数だからです.

(src)="7"> ૬ એ એ જ રીતે ૨ * 3 છે અને , ૨ અને ૩ અવિભાજ્ય છે . આપણે કહી શકીએ કે 10 તે 2 વખત 5 છે . બંને 2 અને 5 અવિભાજ્ય છે . તેથી આપણે 10 ના અવિભાજ્ય અવયવો મળી ગયા . તો ૧૫ , ૬ અને ૧૦ નો લસાઅ માં આ બધા અવિભાજ્ય અવયવો હોવા જોઈએ . એટલે કે હું એમકહેવા માંગું છું કે , લસાઅ ને 15 વડે ભાગી શકાય તેવો હોવા માટે , લસાઅ ના અવિભાજ્ય અવયવ માં ઓછા માં ઓછા એક 3 અને એક 5 હોવા જોઈએ . એટલે કે ઓછા માં ઓછા એક 3 અને એક 5 જોઈએ 3 અને 5 અવિભાજ્ય હોવાથી એમ કહી શકાય કે તે સંખ્યા 15 વડે ભાગી શકાય લસાઅ ને 6 વડે ભાગી શકાય તેના ઓછા માં ઓછા 2 અને 3 અવિભાજ્ય અવયવો હોવા જોઈએ . આપણી પાસે ૩ તો છે જ . આપણને માત્ર એક જ 3 જોઈએ તેથી એક 2 અને એક 3 . તે 3 ગુણ્યા 2 એટલે 6 . એટલે કે આપનો લસાઅ એ 6 વડે ભાગી શકાય તેવો છે . અને અહી 15 છે . અને હવે 10 વડે ભાગાકાર થઇ શકે તે માટે ઓછા માં ઓછો એક 2 અને એક 5 હોવો જોઈએ . અહી 2 હોવા તે જરૂરી છે . તેથી ૨ * ૩ * ૫ મા ૧૦ , ૬ અને ૧૫ ના બધા અવિભાજ્ય અવયવો છે અને તેથી તે આપનો લસાઅ છે . તેથી જો આપણે ગુણાકાર કરીએ તો આપણને
(trg)="33"> そして 10 は 2 かける 5 と同じことです.2 も 5 も両方とも素数です.これで素因数分解は終わりました.
(trg)="34"> 15, 6, 10 の LCM は単にこれら素因数の全てを持つ必要があります.
(trg)="35"> そして私がここで意味するのは...はっきりしておきましょう.LCMになるある数が15 で割り切れるには,

(src)="8"> ૨ * ૩ = ૬ અને ૬ * ૫ = ૩૦ મળે .
(trg)="43"> どちらの方法でもかまいません.これらがあなたの考えと共振して,どうしてこれが筋が通るのかわかってもらえると嬉しいです.

(src)="9"> બન્ને રીતમા આપણને સમાન સંખ્યા જ મળી . અને તમે જોઈ શકો છો કે તે કઈ રીતે સાચું મળે છે . જો તમે ઘણી જટિલ સંખ્યાઓ માટે ગણતરી કરો તો આ બીજી રીતે વધારે સારી છે એવી સંખ્યા ઑ માટે કે જેમાં તમારે લાંબો ગુણાકાર કરવાનો હોય . સારું , પણ બંને માંથી કોઈપણ રીત લસાઅ શોધવા માટે ની સાચી રીત છે .
(trg)="44"> 2番目の方法が少し良い方法です.特に複雑な数,かけ算に時間がかかるような数で,
(trg)="45"> 最小公倍数を求めようという場合には良いです.
(trg)="46"> でも,どちらの方法でも最小公倍数を求める 正しい方法には違いありません.

# gu/0Q3fwpNahN56.xml.gz
# ja/0Q3fwpNahN56.xml.gz


(src)="1"> દાખલો જે પહેલાં કર્યો તે ગુણાકાર હતો . સ્વાગત છે આપનું , નકારાત્મક સંખ્યાઓના ગુણાકાર અને ભાગાકાર ના વિડીઓમાં ચાલો શરૂ કરીએ . મને લાગે છે કે તમને નકારાત્મક સંખ્યાઓના ગુણાકાર અને ભાગાકાર છે તે કરતાં ઘણાં સરળ જણાશે
(trg)="6"> 計算するだけなら, いくつかのルールを覚えるだけです.

(src)="2"> જે હું તમને સરળતાથી સમજાવીશ
(trg)="8"> どうしてこのルールが上手くいくのかの直感について 説明したいと思います.

(src)="3"> તો આના મૂળભૂત નિયમો છે કે જયારે તમે બે નકારાત્મક સંખ્યાઓને ગુણો , જેમકે નકારાત્મક ૨ ગુણ્યા નકારાત્મક ૨ . તો પહેલાં એ સમજો કે બેય સંખ્યાઓમાં નકારાત્મક સંજ્ઞા છેજ નહિ અને તે પ્રમાણે , ૨ ગુણ્યા ૨ બરાબર ૪ . અને અહિયા એવું થશે કે નકારાત્મક ગુણ્યા નાકારતમાં , બરાબર સકારાત્મક . તો ચાલો પહેલો નિયમ લખીએ . એક નકારાત્મક ગુણ્યા એક નકારાત્મક બરાબર એક સકારાત્મક .
(trg)="10"> たとえば,マイナス2かけるマイナス2を 計算するとします.
(trg)="11"> 最初にそれぞれの数がマイナスの符号がないかのように
(trg)="12"> 考えます.

(src)="4"> નકારાત્મક ૨ ગુણ્યા સકારાત્મક ૨ હોય તો શું થાય ? એ સંજોગમાં , ચાલો પહેલાં જોઈએ કે બેઉ સંખ્યાઓ ને વગર સંજ્ઞાએ જોઈએ આપણને ખ્યાલ છે કે ૨ ગુણ્યા ૨ બરાબર ૪ થાય . પણ અહિયાં એક નકારાત્મક અને એક સકારાત્મક ૨ છે , અને તેનો મતલબ એ કે , જયારે એક નકારાત્મક ને ગુણો એક સકારાત્મક સાથે તો તમને એક નકારાત્મક મળે છે . તો એ છે બીજો નિયમ . નકારાત્મક ગુણ્યા સકારાત્મક બરાબર નકારાત્મક . સકારાત્મક ૨ ગુણ્યા નકારાત્મક ૨ નો જવાબ શું આવે ? મને લાગે છે કે તમે આનો ખરો અંદાજ લગાવી શકશો , કેમકે આ બન્ને સરખા હોઈ મારા ખ્યાલ થી તે સકર્મક ગુણ છે , ના , ના મને લાગે છે કે તે વહેવારિક ગુણ છે મારે આને યાદ રાખવું પડશે પણ ૨ ગુણ્યા નકારાત્મક ૨ , તે નકારાત્મક ૪ બરાબર છે . તો અહિયાં છે છેલ્લો નિયમ , કે સકારાત્મક ગુણ્યા નકારાત્મક પણ નકારાત્મક બરાબર હોય છે . અને આ છેલ્લા બે નિયમો , એક રીતે સરખા છે . એક નકારાત્મક ગુણ્યા સકારાત્મક એ નકારાત્મક , અથવા એક સકારાત્મક ગુણ્યા નકારાત્મક પણ નકારાત્મક . તમે એમ પણ કહી શકો કે જયારે બન્ને સંજ્ઞાઓ અલગ હોય , અને તેનાં ગુણાકાર કરો , તો તમને એક નકારાત્મક સંખ્યા મળશે . અને તમને પહેલાથીજ ખ્યાલ હશે કે સકારાત્મક ગુણ્યા સકારાત્મક તે તો સકારાત્મક જ હોય . તો ચાલો ફરી એક વાર જોઈએ નકારાત્મક ગુણ્યા નકારાત્મક એટલે સકારાત્મક નકારાત્મક ગુણ્યા સકારાત્મક એટલે નકારાત્મક સકારાત્મક ગુણ્યા નકારાત્મક એટલે નકારાત્મક અને સકારાત્મક ગુણ્યા સકારાત્મક બરાબર સકારાત્મક . મને લાગે છે કે છેલ્લે તમે મુંઝવાયા હશો તો હું તેને તમારા માટે સરળ બનાવું જો હું તમને કહું કે જયારે તમે ગુણાકાર કરો છો ત્યારે બન્ને સરખી સંજ્ઞાઓ નો જવાબ હમેશા સકારાત્મક હોય . અને બન્ને જુદી સંજ્ઞાઓ નો જવાબ નકારાત્મક હોય
(trg)="19"> この場合でも,2つの数を符号のないものとして
(trg)="20"> みましょう.
(trg)="21"> 2かける2は4です.

(src)="5"> તો તે પ્રમાણે જોઈએ તો ૧ ગુણ્યા ૧ બરાબર ૧ હોય અને નકારાત્મક ૧ ગુણ્યા નકારાત્મક ૧ બરાબર પણ સકારાત્મક ૧ જ હોય . અથવા તો હું કહું કે ૧ ગુણ્યા નકારાત્મક ૧ બરાબર નકારાત્મક ૧ , નકારાત્મક ૧ ગુણ્યા ૧ બરાબર પણ નકારાત્મક ૧ જ હોય . તમે જોયું કે અહિયાં નીચે બે દાખલાઓ મા બે અલગ સંજ્ઞાઓ છે , સકારાત્મક ૧ અને નકારાત્મક ૧ ? અને ઉપલા બે દાખલાઓમાં , અહિયાં બન્ને ૧ સકારાત્મક છે . અને આ બન્ને ૧ નકારાત્મક છે . તો ચાલો થોડાંક દાખલા કરીએ , અને આશા છે કે તે આ બધું સમજાવશે , અને તમે પણ અહિયા અભ્યાસ દાખલા કરી શકો છો અને હું તમને યુક્તિ પણ આપીશ
(trg)="56"> または,マイナス1かけるマイナス1は
(trg)="57"> やはりプラスの1に等しくなります.
(trg)="58"> または1かけるマイナスの1がマイナスの1に等しい,