# en/n3EtyIaFgp0N.xml.gz
# za/n3EtyIaFgp0N.xml.gz


# en/wmlTEXvi9lgU.xml.gz
# za/wmlTEXvi9lgU.xml.gz


(src)="1"> Welcome to the presentation on finding sums of integers .
(src)="2"> You 're probably wondering why are we doing this within the context of averages .
(src)="3"> Well , if you think about it , all an average is is you take a sum of a bunch of numbers and then you divide by the number of numbers you have .
(trg)="1"> iejcdmkdkd oioofofoddddddv jfhvhdxjksdfhhjsjcfhdsy jxgvjuxnhdhvjxyctsuxjjjhh/ hddsydy gdxgxhssaaa´jsjsshhsjss´ssjsjjjsjsjsjssjjs" hffhfhghfdhfgdgfdh " hywsjhudhhe666hshhhsdfh 928493848457488458475477747778784859893840348354875647574867774577647757476774557747574757747 njmcmkfcjsdsmd, x, ss ,, s, s, s hdfjrhgjedkjsjrke3iuriek ggjdhfjdhfjdkjfhedtgjfdjkghkfkdfsk hghdgfusiewjeyuwerewu5bsdbdsdhshdhsggfgds hjhjsaujdsairdieirieud hjsfdsjdfsjjksdjdhffy -- gehhjshdhhfrhehrhewgewhgwjsedh

(src)="8"> -- what is the smallest of the five integers ?
(src)="9"> Well there 's a couple of ways to do this , but I guess the most straightforward way is just to do it algebraically ,
(src)="10"> I would say .
(trg)="2"> -- hdhsjdjasjdhdhghedgfjdejgfh ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? /// jsjsdhems, soqa . sfrjrfjhtgklajhjjj jcvjdghryjwaiidfhyuetfrghesuuuuu ujhsjuuuuu yytyyy yyyyyu hgcgvfhjxcjngfhdhyhhjhdjhhfcjdhgjdjfdfkdjskjksksjkfjkfjsjsj hhyhhhsuysydyhsdy jdjcdjdcj jxszafjewjafjws debiee

(src)="15"> Consecutive just means that they follow each other ,
(src)="16"> like 5 , 6 , 7 , 8 , 9 , 10 .
(src)="17"> All of those are consecutive integers , right ?
(trg)="3"> link , lsasjhlo[ SUASIRHEIRYDAsjiro748375837448 hdhfbsdjfskfjdhggkjdhfjkdhghjdk . gfhdhfUUUU ? jsfkjsjfhkdkksldjfhg hhfhfchjcjcxhjhcndhcdjchdhfjhdjhdjfhfh hjdsfghstkjrfhgeijfrgdashfdgewqhgefdhaewfshdfhgnw jjdsfjdgsdkgjkdsksamj1 xbchxjccyyyyyyyyyyttttdfysuxuydtxgufcgzfuchafhwtcrxfsarhdsdtatrzx2 bncncxjzhxdjxjzjxc ushdfhdhfhgfhghdfhgfjsjfajs mxzvmxnvkx mjdkmvsjdkdsjkzfkdfkmfvskjs . , akjfkj hsdjfhdsfdhshgfhdshfhs jxjnsjhdjsjdfcjsd nvsjkazfjcsdjakdfj mjncxzzkczjkvcjk , kxzjzvckzsdjvc mzxhsZJ xijkzkjvkxjvc kjxzcksajfc jnxczvnjvzjxhnzvjhv

(src)="32"> And then that 's plus 1 plus 2 is 3 , 3 plus 3 is 6 , 6 plus 4 is 10 .
(trg)="4"> lxvlkds; afls z, l . fc, mLd

(src)="33"> So the sum of these five integers is going to be 5x plus 10 , and all I did is add up the x 's and added up the constants .
(src)="34"> And we know that that is going to equal 200 .
(trg)="5"> lKclsAKld pawd[ AODXPC - kASHDFagfhasj

(src)="35"> Now this is just a level two linear equation .
(src)="36"> We can just solve for x .
(src)="37"> So we get 5x is equal to 190 -- I just subtracted 10 from both sides , right ?
(trg)="6"> KFjsicafj jzdfkasjcf isjdcjxjcjdkxjcjdkxjxc udahUDF

(src)="39"> 5 goes into 19 three times , 3 times 5 is 15 .
(src)="40"> 9 minus 5 is 4 , bring down the 0 .
(src)="41"> 5 goes into 40 , eight times .
(trg)="7"> NZKKXSAKKIKKKKK hhsjhfdjdshj xcmzncv jxzncvkdsjkfac jxzhvshaz nskDfkasjfd jhzDHaj hyfghydsh jmzaDLKSAJKd jdmjjfkdfkdk jnksksdkjdjf kxckskfjdkjfkdjfksfjkdsks xnskjdskjgjdsgjssjsj djszKAfjsjfsjs ncnajdsfgjsdgj ajfhjashfjdh zxjsjjds jdhjfewasjgfvldfjkfhydfhefhwdhfushw409ndsnsdhn jxjfcdsjaf dsajdsajjajjajaja jsdhsfjjADAUDH

(src)="55"> If we had a number that was much smaller than 40 or something , you couldn 't just necessarily pick the middle number .
(src)="56"> But in this case these are consecutive and makes sense .
(src)="57"> Another way we could have done this problem , if you were , say , taking the SAT and they were to ask you the sum of five numbers is 200 , what 's the average of the numbers ?
(trg)="8"> JDJDHFFH uijsjjfdskfkdfjfjjfjjgjgjg jdfhdhgfhgghfjj kckdkfvdgfjgjfj skmskfjdkjf xzcksAJFkcsdaj jcsjjdhfhdhgfhfghhgfjje xcdnjghdjgj kxcjdxkfjd kksds xjmcjdxvdfjvg jkxksfu huladxdshjasdg djfjhgh jcxvxhzbhjxdjncxcs cbkjfdgjdjgsj dnsmksjkds zkfmndskjaf mxcnjznVjxnvnzx jzczhjjhdsfhnsjz kdasdfasj cnjsdnfjsfjsfjehrfwqrhjw hhsfhaajshdfgajshdh juduifgiesgtfisrg

(src)="70"> So let 's do this problem .
(src)="71"> Let 's say that x is the largest .
(src)="72"> Then what would the number right below x be ?
(trg)="9"> lcxfkdxgfodxkgod ; fh[ fdpxhgfr; dg; ldf ; hsdjjfhsjfhsdcmcxmmxmxmxxm sgdfgzsdfsfddfsgdgdssfddfsgsgsgsggs jvgjfdjfgjdf

(src)="74"> Well , if x is an odd number , x minus 1 would be an even number .
(src)="75"> So in order to get the number right below it , we have to do x minus 2 to get another odd number .
(trg)="10"> lsflsdldflddlldldlfflglgl hccjdsjjsjsjsj

(src)="76"> My apologies -- it should say the sum of seven consecutive odd .
(src)="77"> I don 't know if you assumed that .
(src)="78"> I 'm trying my best today to confuse you .
(trg)="11"> lxksdalkd ; padlsad; k jkjcxkjxcsdjkfjsd fddgdfgggddfddfg udyusfdy ggddf767yyttj217 hfggfvvggjggbbhhgh jvmdjkccmncvjjfd ndsgejhqwgtf dhwrwerj jhasdfuwq8493743875jdncjsdfjsa najdjhads hjuxshyfdUDW

(src)="83"> So that 's why you 're going up or down by two , depending how you view it .
(src)="84"> So the next one down would be x minus 2 , then we 'll have x minus 4 , x minus 6 , x minus 8 , x minus 10 , x minus 12 .
(src)="85"> I think that 's it .
(trg)="12"> KASJAIKDUWIIADSUAS mxjsdhjcv zxbncnHBsn nxzjchsf vjshjf xfjdksfhsjfh jxvhdsjzf bfeasgdycuhq vghdfesayfd jcdjgergfhegther hyttyttreery uy676euytytytjhjhgygthb shreyrtweyyftysahyfshsg hjsdfyfvwgfysdfe hweutr7fweqyf dshafujyfUUAfdudsudsds jxfkshdfshagiush hsgfydagyfdas sgsydfsytdfystfd sfgeytfyefreytf nfhdsftrjwshfsjgfhdsgheyth dfghdffhgv jhjhjhjgh jfdsfkjfdkfg chjhjhdfj sfsjfhdjfhsj xrxtsetgdffewr htytytu767 uiuijkjkj hjuhujgyutyuhjk 2597 frfytrsyuty777ghyfyhgf7y88t8767ggghh7yhujgrrrrrr25ffgtg yj7etvtrghfujdtvgfhghtvzxdsrfg fedatfeg vsfvds cxfdsf htghghghgh gfgfgfgggg gffrgffgfgffg gfghuyjkjujvbbbbbnk wartfys7hgrfvcaxdsadfrdxzaw32 ghfhjggvhghjnjuhgfvfffgg jhkghhhjjjjhjj uyukjhghujkjig rftghfgtjhhmjkg gvbgfbhncvbdxvdfycbn guyghhukiuuuu hhgdhjhm, kl ujhjkhhgunvbj j , ; k . mljjm . k , gvgtdfgdvbdnfhbdtvdrfrsfxf