# en/01fktUkl0vx8.xml.gz
# ta/01fktUkl0vx8.xml.gz
(src)="1"> We 're asked to multiply 65 times 1 .
(src)="2"> So literally , we just need to multiply 65 , and we could write it as a times sign like that or we could write it as a dot like that but this means 65 times 1 .
(src)="3"> And there 's two ways to interpret this .
(trg)="1"> 65 x 1 என்றால் என்ன ? எனவே , 65- உடன் 1- ஐ பெருக்க வேண்டும் . எனவே , இதை பெருக்கல் குறியில் மாற்றி எழுதலாம் . இது 65 x 1 ஆகும் . இதை இரண்டு முறைகளில் செய்யலாம் .
(src)="4"> You could view this as the number 65 one time or you could view this as the number 1 sixty- five times , all added up .
(src)="5"> But either way , if you have one 65 , this is literally just going to be 65 .
(trg)="2"> 65- ஐ ஒரு முறை எடுப்பது அல்லது 1- ஐ 65 முறை கூட்டுவது ஆகும் . இரண்டிற்கும் விடை 65 என்று தான் வரும் .
(src)="6"> Anything times 1 is going to be that anything , whatever this is .
(src)="7"> Whatever this is times 1 is going to be that same thing again .
(src)="8"> If I have just some kind of placeholder here times 1 ,
(trg)="3"> 1- உடன் எந்த எண்ணை பெருக்கினாலும் அதே எண் தான் வரும் அது எந்த எண்ணாக இருந்தாலும் அதே எண் தான் விடையாக வரும் இங்கு ஒரு நிரப்பு கோட்டை போடுகிறேன் அதனுடன் 3 பெருக்கல் 1 என்பது 3 ஆகும் .
(src)="11"> If I have 5 times 1 , I 'm going to get 5 , because literally , all this is saying is 5 one time .
(trg)="4"> 5 பெருக்கல் 1 என்பது 5 ஆகும் ஏனெனில் , இது 5 ஐ ஒரு முறை எழுதுவது .
(src)="12"> If I put -- I don 't know -- 157 times 1 , that 'll be 157 .
(src)="13"> I think you get the idea .
(trg)="5"> 157 பெருக்கல் 1 என்பது 157 ஆகும் . உங்களுக்கு இது புரிந்திருக்கும் என்று நினைக்கிறன் .
# en/0El4uQjU5hpR.xml.gz
# ta/0El4uQjU5hpR.xml.gz
(src)="1"> Let 's think a little bit about powers of zero .
(trg)="1"> 0 வின் அடுக்குகளை பற்றி இப்பொழுது பார்க்கலாம் .
(src)="2"> What do you think zero to the first power is going to be ?
(src)="3"> I encourage you to pause this video .
(src)="4"> Let 's just think about it .
(trg)="2"> 0 அடுக்கு 1 என்றால் என்ன ? காணொளியை இடை நிறுத்தம் செய்து , சிறிது சிந்தியுங்கள் . அடுக்குகளின் வரையறை என்பது , ஒன்றில் தொடங்கி , பிறகு அந்த எண்ணால் ஒன்றை பெருக்குவது ஆகும் . இது ஒன்று பெருக்கல் , இதை வேறு வண்ணத்தில் செய்கிறேன் , ஒன்று பெருக்கல் 0 ஆகும் . நாம் ஒன்றை 0 வுடன் ஒரு முறை பெருக்குகிறோம் . ஒன்று பெருக்கல் பூஜ்யம் . இதன் மதிப்பு பூஜ்யம் தான் . பூஜ்யம் இரட்டிப்பு என்றால் என்ன ? அல்லது பூஜ்யம் அடுக்கு இரண்டு என்றால் என்ன ? மீண்டும் இதனை , ஒன்றில் இருந்து தொடங்கி , இந்த 0 வை இரு முறை பெருக்கப் போகிறோம் . எனவே , பெருக்கல் 0 பெருக்கல் 0 ஆகும் . இதன் விடை என்ன ?
(src)="16"> You multiply anything times zero , once again , you are going to get zero .
(src)="17"> I think you see a pattern here .
(src)="18"> If I take zero to any non- zero number , so to the power of any non- zero --
(trg)="3"> 0 ஆல் எந்த எண்ணை பெருக்கினாலும் , நமது விடை 0 தான் . இதன் வடிவமைப்பை பாருங்கள் . பூஜியத்தை எந்த ஒரு பூஜ்யம் அல்லாத எண்ணின் அடுக்கிற்கு உயர்த்தினாலும் இது பூஜ்யம் அல்லாத எண் , பூஜ்யம் அல்லாத எண் . இது பூஜ்யம் ஆகும் . இதன் மதிப்பு பூஜ்யம் . இது ஒரு சுவாரஸ்யமான கேள்வியை உருவாக்குகிறது . பூஜ்யம் அடுக்கு பூஜ்யம் என்றால் என்ன ? பூஜ்யம் அடுக்கு மில்லியன் என்பதும் பூஜ்யம் தான் . பூஜ்யம் அடுக்கு ட்ரில்லியன் என்பதும் பூஜ்யம் தான் . எதிர்மம் , பின்னம் இவைகளை பற்றி நாம் இன்னும் பார்க்க வில்லை . இது பூஜ்யம் அல்லாத எண்ணாக இருந்தால் இதன் மதிப்பு பூஜ்யம் தான் . இது உங்களுக்கு புரியும் என்று நினைக்கிறன் . இப்பொழுது பூஜ்யம் அடுக்கு பூஜ்யம் என்றால் என்ன என்று பார்க்கலாம் . இது சற்று குழப்பமான , ஆழமான கேள்வி . நான் உங்களுக்கு ஒரு குறிப்பு தருகிறேன் . நீங்கள் இந்த காணொளியை இடைநிறுத்தம் செய்து முயற்சியுங்கள் . பூஜ்யம் அடுக்கு பூஜ்யம் என்றால் என்ன என்று பார்க்கலாம் . இது இரு வேறு யோசனைகளை . பூஜ்யம் அடுக்கு பூஜ்யம் அல்லாத எண் , பூஜ்யம் ஆகும் . இதை ஏன் அனைத்து எண்களுக்கும் கூற கூடாது பூஜ்யம் அடுக்கு எந்த ஒரு எண்ணும் பூஜ்யம் எனலாமே ! பூஜ்யம் அடுக்கு பூஜ்யம் என்றால் பூஜ்யம் என்றும் கூறலாமே ! வேறு ஒரு யோசனை என்னவென்றால் , எந்த ஒரு பூஜ்யம் அல்லாத எண்ணும் , பூஜ்யம் அல்லாத எண் , எந்த ஒரு பூஜ்யம் அல்லாத எண்ணையும் பூஜியத்தின் அடுக்கிற்கு உயர்த்தினால் . நாம் ஒன்றில் தொடங்கி , பூஜ்யம் அல்லாத எண்ணை பூஜியத்தால் பெருக்கினால் , இதன் விடை ஒன்று கிடைக்கும் . இதன் மதிப்பு எப்பொழுதும் ஒன்று தான் . இதை ஏன் நாம் அனைத்து எண்களுக்கும் கூற கூடாது ? பூஜ்யம் அடுக்கு பூஜ்யம் ஒன்று எனலாமே ? நாம் பூஜ்யம் அடுக்கு பூஜ்யம் என்பது ஒன்று எனலாம் . இப்பொழுது உங்களுக்கு இதன் சிக்கல் புரியும் . இப்பொழுது உங்களுக்கு இதன் சிக்கல் புரியும் . இவை இரண்டும் வெவ்வேறு வழக்குகள் , 0 அடுக்கு 0 என்பது 0 ; 0 அடுக்கு 0 என்பது 1 கணக்கு மேதைகள் இவ்வாறான சூழ்நிலைகளில் , இவை இரண்டும் வெவ்வேறு வழக்குகள் , இயற்கையாகவே , இதற்கு ஒரு விடை கிடையாது . இந்த இரண்டுமே கணக்குகளில் குழப்பத்தை ஏற்படுத்தும் . பொதுவாக அனைவரும் அனைத்து கணக்கு மேதைகளும் , ஒன்றை தான் விரும்புவார்கள் . ஆனால் , இது இன்னும் வரையறுக்கப் படவில்லை . பூஜ்யம் அடுக்கு பூஜ்யம் என்பது வரையறுக்கப் படவில்லை . சில இடங்களில் , இரண்டில் ஒன்றை வரையறுக்கலாம் . பூஜியத்தின் அடுக்கு பூஜ்யம் அல்லாத எண் என்றால் , அது 0 ஆகும் . பூஜ்யம் அல்லாத எண்ணின் அடுக்கு பூஜ்யம் என்றால் , அது 1 ஆகும் .
(src)="61"> But zero to the zero , that 's a little bit of a question mark .
(trg)="4"> 0 அடுக்கு 0 என்பது இன்னும் ஒரு கேள்விக்குறி தான்
# en/0FuVxnyiHoN7.xml.gz
# ta/0FuVxnyiHoN7.xml.gz
(src)="1"> Simplify the rate of cans of soda compared to people .
(src)="2"> So this ratio here says that we have 92 cans of soda for every 28 people .
(src)="3"> What we want to do is simplify this , and really just putting this ratio , or this fraction , in simplest form .
(trg)="1"> சோடா கேன்களின் வீதத்தை மக்களோடு ஒப்பிட்டு சுருக்குக . இங்கு இதன் விகிதம் 28 மக்களுக்கு 92 சோடா கேன்கள் இருக்கின்றன . நாம் இதன் விகிதத்தை கண்டறிந்து அல்லது இதன் பின்னத்தை சுருக்கி எளிய வடிவில் கூற வேண்டும் . அதற்கு , இந்த இரண்டு எண்களின் , பொதுவான மீப்பெறு வகுத்தியை கண்டறிய வேண்டும் .
(src)="5"> largest number , or the largest common factor , of both 92 and 28 , and divide both of these numbers by that common factor .
(src)="6"> So let 's figure out what it is .
(src)="7"> And to do that , let 's just take the prime factorization of 92 , and then we 'll do the prime factorization of 28 .
(trg)="2"> 92 மற்றும் 28 , இரண்டு எண்களையும் வகுக்கும் பொதுவான வகுத்தி . இதை நாம் பகாக்காரணி முறையில் செய்யலாம் . முதலில் 92 - ன் பகாகரணியை கண்டறியலாம் . பிறகு 28 .
(src)="8"> So 92 is 2 times 46 , which is 2 times 23 .
(trg)="3"> 92 = 2 x 46 அதாவது 2 x 2 x 23 .
(src)="9"> And 23 is a prime number , so we 're done .
(src)="10"> 92 is 2 times 2 times 23 .
(trg)="4"> 23 என்பது பகா எண் ஆகும் 92 = 2 x 2 x 23 ஆகும் .
(src)="11"> And if we did the prime factorization of 28 , 28 is 2 times 14 , which is 2 times 7 .
(trg)="5"> 28 என்றால் 2 x 14 ஆகும் .
(src)="12"> So we can rewrite the 92 cans of soda as 2 times 2 times 23 cans of soda for every 2 times 2 times 7 people .
(src)="13"> Now , both of these numbers have a 2 times 2 in it , or they 're both divisible by 4 .
(src)="14"> That is their greatest common factor .
(trg)="6"> 14 என்றால் 2 x 7 ஆகும் . எனவே , 92 சோடா கேன்களை 2 x 2 x 23 எனலாம் . மற்றும் மக்கள் எண்ணிக்கை 2 x 2 x 7 ஆகும் . இந்த இரண்டு எண்களும் 2 x 2 ஐ கொண்டிருக்கிறது . எனவே , இது 4- ஆல் வகுபடும் . இது தான் மீப்பெறு பொது வகுத்தி . எனவே இதன் தொகுதி மற்றும் பகுதி எண்களை 4- ஆல் வகுக்கலாம் . எனவே , இதன் தொகுதி எண்ணை 4 ஆல் வகுத்தால் , அல்லது 2 x 2 ஆல் வகுத்தால் , இது நீங்கி விடும் . பிறகு , இதன் பகுதி எண்ணை 4 ஆல் வகுத்தால் , அல்லது , 2 x 2 ஆல் வகுத்தால் , இது நீங்கி விடும் . அப்படியென்றால் , ஒவ்வொரு 7 மக்களுக்கும் , 23 சோடா கேன்கள் உள்ளன . ஒவ்வொரு 23 சோடா கேன்களுக்கும் , 7 மக்கள் உள்ளனர் . அவ்வளவு தான் ! நாம் சோடா கேன்கள் மற்றும் மக்களின் விகிதத்தை எளிதாக்கி விட்டோம் . அவர்கள் சோடா கேன்களின் வீதத்தை கண்டறிகிறார்கள் 7 மக்கள் எத்தனை கேன்கள் பருகுகிறார்கள் என்று . அல்லது நீங்கள் இதனை விகிதமாகவும் பார்க்கலாம் .
# en/0HgfeWgB8T8n.xml.gz
# ta/0HgfeWgB8T8n.xml.gz
(src)="1"> What is the least common multiple , abbreviated as LCM , of 15 , 6 and 10 ?
(src)="2"> So the LCM is exactly what the word is saying , it is the least common multiple of these numbers .
(src)="3"> And I know that probably did not help you much .
(trg)="1"> 15 , 6 மற்றும் 10 ஆகியவற்றின் மீச்சிறு பொது மடங்கு , அதாவது மீ . பொ . ம . , என்ன ? மீ . பொ . ம . என்பது அந்த வார்த்தையில் குறிப்பிடப்பட்டுள்ளதைப் போன்றே , இந்த எண்களின் மீச்சிறு பொது மடங்கு ஆகும் . இதைப் பற்றி இந்தக் கணக்கில் தெரிந்துகொள்வோம் . அதைச் செய்வதற்கு , 15 , 6 மற்றும் 10 ஆகியவற்றின் பல்வேறு மடங்குகளை நாம் கருத்தில் கொள்வோம் . பிறகு அந்த எண்களுக்கு பொதுவாக உள்ள மிகச்சிறிய மடங்கை கண்டுபிடிக்கவும் . எனவே , 15 - ன் பெருக்குகளை கண்டுபிடிப்போம் .
(src)="8"> 1 times 15 is 15 , two times 15 is 30 , then if you add 15 again you get 45 , you add 15 again you get 60 , you add 15 again , you get 75 , you add 15 again , you get 90 , you add 15 again you get 105 . and if still none of these are common multiples with these guys over here then you may have to go further , but I will stop here for now .
(src)="9"> Now that 's the multiples of 15 up through 105 .
(src)="10"> Obviously , we keep going from there .
(trg)="2"> 1x15 =15 , 2x15=30 , பின்பு நீங்கள் மீண்டும் 15ஐக் கூட்டினால் 45 கிடைக்கும் , மீண்டும் 15ஐக் கூட்டினால் 60 கிடைக்கும் , மீண்டும் 15ஐக் கூட்டினால் , 75 கிடைக்கும் , மீண்டும் 15ஐக் கூட்டினால் 90 கிடைக்கும் , மீண்டும் 15ஐக் கூட்டினால் 105 கிடைக்கும் . இங்கே உள்ள காரணிகளுக்குப் பொதுவாக இவற்றில் ஏதும் இல்லையெனில் , நீங்கள் மேலும் தொடர வேண்டியிருக்கலாம் , ஆனால் இப்பொழுது நான் இங்கே நிறுத்திவிடுகிறேன் . இதுவரை நாம் 15- ன் மடங்குகளை 105 வரை கண்டுபிடித்துள்ளோம் . இப்பொழுது நாம் 6- ன் மடங்குகளைக் கண்டுபிடிப்போம் .
(src)="12"> Let 's do the multiples of 6 :
(trg)="3"> 6- ன் மடங்குகள் :
(src)="13"> 1 times 6 is 6 , two times 6 is 12 , 3 times 6 is 18 , 4 times 6 is 24 , 5 times 6 is 30 , 6 times 6 is 36 , 7 times 6 is 42 , 8 times 6 is 48 , 9 times 6 is 54 , 10 times 6 is 60 .
(trg)="4"> 1x6=6 , 2x6=12 , 3x6=18 , 4x6=24 , 5x6=30 , 6x6=36 , 7x6=42 , 8x6=48 , 9x6=54 , 10x6=60 .
(src)="14"> 60 already looks interesting , because it is a common multiple of both 15 and 60 .
(src)="15"> Although we have to of them over here .
(src)="16"> We have 30 and we have a 30 , we have a 60 and a 60 .
(trg)="5"> 60 என்பது போதுமானதாக இருக்கின்றது , ஏனெனில் அது 15 மற்றும் 60- ன் பொதுவான மடங்கு . இவற்றில் இரண்டு நம்மிடம் இருக்கிறது . நம்மிடம் ஒரு 30 மற்றும் ஒரு 30 , ஒரு 60 மற்றும் ஒரு 60 இருக்கிறது . எனவே , மீச்சிறு மீ . பொ . ம ... ... எனவே 15 மற்றும் 6- ன் பொதுவான மடங்கினை மட்டும் கருத்தில் எடுத்துக்கொண்டால் . நாம் அது 30 எனக் கூறலாம் . அதை ஒரு இடைப்பட்ட எண்ணாக எழுதுவோம் 15 மற்றும் 6- ன் மீ . பொ . ம . இதில் பொதுவாக இருக்கக்கூடிய மிகச் சிறிய மடங்கு ஆகும் .
(src)="21"> 15 times 2 is 30 and 6 times 5 is 30 .
(src)="22"> So this is definitely a common multiple and it is the smallest of all of their LCMs .
(trg)="6"> 15x2=30 , மற்றும் 6x5=30 . எனவே , நிச்சயமாக இது ஒரு பொது மடங்கு ஆகும் . மேலும் , இது அனைத்து மீ . பொ . ம . - க்களிலும் மிகச் சிறியதாகும் .
(src)="23"> 60 is also a common multiple , but it is a bigger one .
(src)="24"> This is the least common multiple .
(src)="25"> So this is 30 .
(trg)="7"> 60- ம் பொது மடங்கு தான் , ஆனால் அது பெரியது . எனவே , 30 மீச்சிறு பொது மடங்கு ஆகும் . நாம் இன்னும் 10 ஐக் கருத்தில் கொள்ளவில்லை . எனவே , 10 ஐ உள்ளே கொண்டு வரலாம் .
(src)="29"> Let 's do the multiples of 10 .
(src)="30"> They are 10 , 20 , 30 , 40 ... well , we already went far enough .
(src)="31"> Because we already got to 30 , and 30 is a common multiple of 15 and 6 and it is the smallest common multiple of all of them .
(trg)="8"> 10- ன் மடங்குகளை கண்டுபிடிப்போம் . அவை 10 , 20 , 30 , 40 ... இது போதுமானது . ஏனெனில் , நாம் ஏற்கனவே 30 ஐ பெற்றுவிட்டோம் , 30 என்பது 15 மற்றும் 6- ன் பொது மடங்கு . மேலும் , இவை அனைத்திலும் இது மிகச்சிறிய பொது மடங்கு ஆகும் . உண்மையில் , 15 , 6 மற்றும் 10 ஆகியவற்றின் மீ . பொ . ம .
(src)="32"> So it is actually the fact that the LCM of 15 , 6 and 10 is equal to 30 .
(src)="33"> Now , this is one way to find the least common multiple .
(src)="34"> Literally , just find and look at the multiples of each of the numbers ... and then see what the smallest multiple is they have in common .
(trg)="9"> 30- ற்கு சமம் . மீச்சிறு பொது மடங்கை கண்டுபிடிக்க இது ஒரு வழி . ஒவ்வொரு எண்ணின் மடங்குகளையும் கண்டுபிடித்து பின்பு , அவற்றில் பொதுவாக உள்ள மிகச்சிறிய மடங்கு எது எனப் பார்க்கவும் . இதைற்கு மற்றொரு வழி , இந்த எண்களின் பகாக் காரணிகளைக் கண்டறிவது . மேலும் மீ . பொ . ம . என்பது , இந்த பகாக் காரணிகளின் அனைத்து எண்களையும் கொண்டிருக்கும் . நான் உங்களுக்குக் காண்பிக்கிறேன் . எனவே , நீங்கள் இந்த வழியில் செய்யலாம் , அல்லது 15 என்பது 3x5 சமமாகும் , அவ்வளவுதான் . இதுதான் அதன் பகாக்காரணிகள் , 15 என்பது 3x5 , ஏனெனில் 3 மற்றும் 5 இரண்டுமே பகா எண்கள் .