# da/01fktUkl0vx8.xml.gz
# ta/01fktUkl0vx8.xml.gz
(src)="2"> Vi skal gange 65 med 1 . .
(src)="3"> Vi kan skrive det som et gangetegn ligesom her , eller vi kan skrive det som en prik ligesom her .
(trg)="1"> 65 x 1 என்றால் என்ன ? எனவே , 65- உடன் 1- ஐ பெருக்க வேண்டும் . எனவே , இதை பெருக்கல் குறியில் மாற்றி எழுதலாம் . இது 65 x 1 ஆகும் . இதை இரண்டு முறைகளில் செய்யலாம் .
(src)="6"> Vi kan betragte det som 65 1 gang , eller vi kan betragte det som tallet 1 65 gange . .
(src)="7"> Uanset hvordan vi gør , ender det med at blive 65 , når vi har 1 af dem .
(trg)="2"> 65- ஐ ஒரு முறை எடுப்பது அல்லது 1- ஐ 65 முறை கூட்டுவது ஆகும் . இரண்டிற்கும் விடை 65 என்று தான் வரும் .
(src)="8"> Hvilken som helst værdi ganget med 1 vil stadig have samme værdi .
(src)="9"> Et hvilket som helst tal ganget med 1 vil altid give det samme som tallet .
(src)="10"> Lad os sige , at vi har en plads her , og vi ganger med 1 .
(trg)="3"> 1- உடன் எந்த எண்ணை பெருக்கினாலும் அதே எண் தான் வரும் அது எந்த எண்ணாக இருந்தாலும் அதே எண் தான் விடையாக வரும் இங்கு ஒரு நிரப்பு கோட்டை போடுகிறேன் அதனுடன் 3 பெருக்கல் 1 என்பது 3 ஆகும் .
(src)="13"> Hvis vi har 5 gange 1 , bliver det 5 , fordi det svarer til at sige 5 1 gang .
(trg)="4"> 5 பெருக்கல் 1 என்பது 5 ஆகும் ஏனெனில் , இது 5 ஐ ஒரு முறை எழுதுவது .
(src)="14"> Hvis jeg nu skriver 157 på pladsen og ganger med 1 , så bliver det 157 .
(src)="15"> Vi burde forstå det nu . .
(trg)="5"> 157 பெருக்கல் 1 என்பது 157 ஆகும் . உங்களுக்கு இது புரிந்திருக்கும் என்று நினைக்கிறன் .
# da/0El4uQjU5hpR.xml.gz
# ta/0El4uQjU5hpR.xml.gz
(src)="1"> Lad os se på nogle potenstal med 0 som rod .
(trg)="1"> 0 வின் அடுக்குகளை பற்றி இப்பொழுது பார்க்கலாம் .
(src)="2"> Hvad er 0 i første ?
(src)="3"> Prøv at pause videoen og tænke over det .
(src)="4"> En definition af potenstal er , at vi har et 1- tal , og så ganger vi det her tal med 1 én gang .
(trg)="2"> 0 அடுக்கு 1 என்றால் என்ன ? காணொளியை இடை நிறுத்தம் செய்து , சிறிது சிந்தியுங்கள் . அடுக்குகளின் வரையறை என்பது , ஒன்றில் தொடங்கி , பிறகு அந்த எண்ணால் ஒன்றை பெருக்குவது ஆகும் . இது ஒன்று பெருக்கல் , இதை வேறு வண்ணத்தில் செய்கிறேன் , ஒன்று பெருக்கல் 0 ஆகும் . நாம் ஒன்றை 0 வுடன் ஒரு முறை பெருக்குகிறோம் . ஒன்று பெருக்கல் பூஜ்யம் . இதன் மதிப்பு பூஜ்யம் தான் . பூஜ்யம் இரட்டிப்பு என்றால் என்ன ? அல்லது பூஜ்யம் அடுக்கு இரண்டு என்றால் என்ன ? மீண்டும் இதனை , ஒன்றில் இருந்து தொடங்கி , இந்த 0 வை இரு முறை பெருக்கப் போகிறோம் . எனவே , பெருக்கல் 0 பெருக்கல் 0 ஆகும் . இதன் விடை என்ன ?
(src)="14"> Når vi ganger noget med 0 , får vi 0 .
(src)="15"> Der er vist et mønster .
(src)="16"> Hvis vi opløfter 0 i noget , der ikke er 0 , får vi 0 . .
(trg)="3"> 0 ஆல் எந்த எண்ணை பெருக்கினாலும் , நமது விடை 0 தான் . இதன் வடிவமைப்பை பாருங்கள் . பூஜியத்தை எந்த ஒரு பூஜ்யம் அல்லாத எண்ணின் அடுக்கிற்கு உயர்த்தினாலும் இது பூஜ்யம் அல்லாத எண் , பூஜ்யம் அல்லாத எண் . இது பூஜ்யம் ஆகும் . இதன் மதிப்பு பூஜ்யம் . இது ஒரு சுவாரஸ்யமான கேள்வியை உருவாக்குகிறது . பூஜ்யம் அடுக்கு பூஜ்யம் என்றால் என்ன ? பூஜ்யம் அடுக்கு மில்லியன் என்பதும் பூஜ்யம் தான் . பூஜ்யம் அடுக்கு ட்ரில்லியன் என்பதும் பூஜ்யம் தான் . எதிர்மம் , பின்னம் இவைகளை பற்றி நாம் இன்னும் பார்க்க வில்லை . இது பூஜ்யம் அல்லாத எண்ணாக இருந்தால் இதன் மதிப்பு பூஜ்யம் தான் . இது உங்களுக்கு புரியும் என்று நினைக்கிறன் . இப்பொழுது பூஜ்யம் அடுக்கு பூஜ்யம் என்றால் என்ன என்று பார்க்கலாம் . இது சற்று குழப்பமான , ஆழமான கேள்வி . நான் உங்களுக்கு ஒரு குறிப்பு தருகிறேன் . நீங்கள் இந்த காணொளியை இடைநிறுத்தம் செய்து முயற்சியுங்கள் . பூஜ்யம் அடுக்கு பூஜ்யம் என்றால் என்ன என்று பார்க்கலாம் . இது இரு வேறு யோசனைகளை . பூஜ்யம் அடுக்கு பூஜ்யம் அல்லாத எண் , பூஜ்யம் ஆகும் . இதை ஏன் அனைத்து எண்களுக்கும் கூற கூடாது பூஜ்யம் அடுக்கு எந்த ஒரு எண்ணும் பூஜ்யம் எனலாமே ! பூஜ்யம் அடுக்கு பூஜ்யம் என்றால் பூஜ்யம் என்றும் கூறலாமே ! வேறு ஒரு யோசனை என்னவென்றால் , எந்த ஒரு பூஜ்யம் அல்லாத எண்ணும் , பூஜ்யம் அல்லாத எண் , எந்த ஒரு பூஜ்யம் அல்லாத எண்ணையும் பூஜியத்தின் அடுக்கிற்கு உயர்த்தினால் . நாம் ஒன்றில் தொடங்கி , பூஜ்யம் அல்லாத எண்ணை பூஜியத்தால் பெருக்கினால் , இதன் விடை ஒன்று கிடைக்கும் . இதன் மதிப்பு எப்பொழுதும் ஒன்று தான் . இதை ஏன் நாம் அனைத்து எண்களுக்கும் கூற கூடாது ? பூஜ்யம் அடுக்கு பூஜ்யம் ஒன்று எனலாமே ? நாம் பூஜ்யம் அடுக்கு பூஜ்யம் என்பது ஒன்று எனலாம் . இப்பொழுது உங்களுக்கு இதன் சிக்கல் புரியும் . இப்பொழுது உங்களுக்கு இதன் சிக்கல் புரியும் . இவை இரண்டும் வெவ்வேறு வழக்குகள் , 0 அடுக்கு 0 என்பது 0 ; 0 அடுக்கு 0 என்பது 1 கணக்கு மேதைகள் இவ்வாறான சூழ்நிலைகளில் , இவை இரண்டும் வெவ்வேறு வழக்குகள் , இயற்கையாகவே , இதற்கு ஒரு விடை கிடையாது . இந்த இரண்டுமே கணக்குகளில் குழப்பத்தை ஏற்படுத்தும் . பொதுவாக அனைவரும் அனைத்து கணக்கு மேதைகளும் , ஒன்றை தான் விரும்புவார்கள் . ஆனால் , இது இன்னும் வரையறுக்கப் படவில்லை . பூஜ்யம் அடுக்கு பூஜ்யம் என்பது வரையறுக்கப் படவில்லை . சில இடங்களில் , இரண்டில் ஒன்றை வரையறுக்கலாம் . பூஜியத்தின் அடுக்கு பூஜ்யம் அல்லாத எண் என்றால் , அது 0 ஆகும் . பூஜ்யம் அல்லாத எண்ணின் அடுக்கு பூஜ்யம் என்றால் , அது 1 ஆகும் .
(src)="51"> 0 i nulte ved vi dog ikke så meget om .
(trg)="4"> 0 அடுக்கு 0 என்பது இன்னும் ஒரு கேள்விக்குறி தான்
# da/0FuVxnyiHoN7.xml.gz
# ta/0FuVxnyiHoN7.xml.gz
(src)="1"> Forkort raten af sodavand til personer .
(src)="2"> Forholdet her udtrykker , at der er 92 dåser sodavand for hver 28 personer .
(src)="3"> Vi skal forkorte det , og det betyder , at vi skal skrive brøken med de mindst mulige hele tal .
(trg)="1"> சோடா கேன்களின் வீதத்தை மக்களோடு ஒப்பிட்டு சுருக்குக . இங்கு இதன் விகிதம் 28 மக்களுக்கு 92 சோடா கேன்கள் இருக்கின்றன . நாம் இதன் விகிதத்தை கண்டறிந்து அல்லது இதன் பின்னத்தை சுருக்கி எளிய வடிவில் கூற வேண்டும் . அதற்கு , இந்த இரண்டு எண்களின் , பொதுவான மீப்பெறு வகுத்தியை கண்டறிய வேண்டும் .
(src)="4"> Den bedste måde at gøre det på er at finde den største fælles faktor for 92 og 28 .
(src)="5"> Herefter skal vi dividere begge de her tal med den faktor .
(src)="6"> Lad os finde den største fælles faktor .
(trg)="2"> 92 மற்றும் 28 , இரண்டு எண்களையும் வகுக்கும் பொதுவான வகுத்தி . இதை நாம் பகாக்காரணி முறையில் செய்யலாம் . முதலில் 92 - ன் பகாகரணியை கண்டறியலாம் . பிறகு 28 .
(src)="8"> 92 er 2 gange 46 .
(src)="9"> 46 er 2 gange 23 .
(trg)="3"> 92 = 2 x 46 அதாவது 2 x 2 x 23 .
(src)="10"> 23 er et primtal , så vi er færdige med 92 .
(src)="11"> 92 er 2 gange 2 gange 23 .
(trg)="4"> 23 என்பது பகா எண் ஆகும் 92 = 2 x 2 x 23 ஆகும் .
(src)="12"> Det skal vi også gøre med 28 .
(trg)="5"> 28 என்றால் 2 x 14 ஆகும் .
(src)="13"> 28 er 2 gange 14 , som er 2 gange 7 .
(src)="14"> Vi kan skrive vores brøkVi kan derfor skrive vores brøk om til :
(src)="15"> 2 gange 2 gange 23 sodavand for hver 2 gange 2 gange 7 personer .
(trg)="6"> 14 என்றால் 2 x 7 ஆகும் . எனவே , 92 சோடா கேன்களை 2 x 2 x 23 எனலாம் . மற்றும் மக்கள் எண்ணிக்கை 2 x 2 x 7 ஆகும் . இந்த இரண்டு எண்களும் 2 x 2 ஐ கொண்டிருக்கிறது . எனவே , இது 4- ஆல் வகுபடும் . இது தான் மீப்பெறு பொது வகுத்தி . எனவே இதன் தொகுதி மற்றும் பகுதி எண்களை 4- ஆல் வகுக்கலாம் . எனவே , இதன் தொகுதி எண்ணை 4 ஆல் வகுத்தால் , அல்லது 2 x 2 ஆல் வகுத்தால் , இது நீங்கி விடும் . பிறகு , இதன் பகுதி எண்ணை 4 ஆல் வகுத்தால் , அல்லது , 2 x 2 ஆல் வகுத்தால் , இது நீங்கி விடும் . அப்படியென்றால் , ஒவ்வொரு 7 மக்களுக்கும் , 23 சோடா கேன்கள் உள்ளன . ஒவ்வொரு 23 சோடா கேன்களுக்கும் , 7 மக்கள் உள்ளனர் . அவ்வளவு தான் ! நாம் சோடா கேன்கள் மற்றும் மக்களின் விகிதத்தை எளிதாக்கி விட்டோம் . அவர்கள் சோடா கேன்களின் வீதத்தை கண்டறிகிறார்கள் 7 மக்கள் எத்தனை கேன்கள் பருகுகிறார்கள் என்று . அல்லது நீங்கள் இதனை விகிதமாகவும் பார்க்கலாம் .
# da/0HgfeWgB8T8n.xml.gz
# ta/0HgfeWgB8T8n.xml.gz
(src)="1"> Hvad er det mindste fælles multiplum ( MFM ) af 15 , 6 og 10 ?
(src)="2"> Det mindste fælles multiplum er præcis det , ordene siger :
(src)="3"> Det mindste tal , som alle tallene går op i .
(trg)="1"> 15 , 6 மற்றும் 10 ஆகியவற்றின் மீச்சிறு பொது மடங்கு , அதாவது மீ . பொ . ம . , என்ன ? மீ . பொ . ம . என்பது அந்த வார்த்தையில் குறிப்பிடப்பட்டுள்ளதைப் போன்றே , இந்த எண்களின் மீச்சிறு பொது மடங்கு ஆகும் . இதைப் பற்றி இந்தக் கணக்கில் தெரிந்துகொள்வோம் . அதைச் செய்வதற்கு , 15 , 6 மற்றும் 10 ஆகியவற்றின் பல்வேறு மடங்குகளை நாம் கருத்தில் கொள்வோம் . பிறகு அந்த எண்களுக்கு பொதுவாக உள்ள மிகச்சிறிய மடங்கை கண்டுபிடிக்கவும் . எனவே , 15 - ன் பெருக்குகளை கண்டுபிடிப்போம் .
(src)="7"> Vi har , at 1 gange 15 er 15 , 2 gange 15 er 30 , og hvis vi lægger 15 til 30 , får vi 45 , og 15 mere er 60 , og 15 mere er 75 , 15 mere giver 90 , og 15 mere giver 105 .
(src)="8"> Hvis ingen af de her tal er et fælles multiplum med dem derovre , skal vi regne videre , men vi stopper her indtil videre .
(src)="9"> Det var multipla for tallet 15 op til 105 .
(trg)="2"> 1x15 =15 , 2x15=30 , பின்பு நீங்கள் மீண்டும் 15ஐக் கூட்டினால் 45 கிடைக்கும் , மீண்டும் 15ஐக் கூட்டினால் 60 கிடைக்கும் , மீண்டும் 15ஐக் கூட்டினால் , 75 கிடைக்கும் , மீண்டும் 15ஐக் கூட்டினால் 90 கிடைக்கும் , மீண்டும் 15ஐக் கூட்டினால் 105 கிடைக்கும் . இங்கே உள்ள காரணிகளுக்குப் பொதுவாக இவற்றில் ஏதும் இல்லையெனில் , நீங்கள் மேலும் தொடர வேண்டியிருக்கலாம் , ஆனால் இப்பொழுது நான் இங்கே நிறுத்திவிடுகிறேன் . இதுவரை நாம் 15- ன் மடங்குகளை 105 வரை கண்டுபிடித்துள்ளோம் . இப்பொழுது நாம் 6- ன் மடங்குகளைக் கண்டுபிடிப்போம் .
(src)="11"> 1 gange 6 er 6 , 2 gange 6 er 12 , 3 gange 6 er 18 , 4 gange 6 er 24 , 5 gange 6 er 30 , 6 gange 6 er 36 , 7 gange 6 er 42 , 8 gange 6 er 48 , 9 gange 6 er 54 , 10 gange 6 er 60 .
(trg)="3"> 6- ன் மடங்குகள் :
(trg)="4"> 1x6=6 , 2x6=12 , 3x6=18 , 4x6=24 , 5x6=30 , 6x6=36 , 7x6=42 , 8x6=48 , 9x6=54 , 10x6=60 .
(src)="12"> 60 ser interessant ud , fordi den er et fælles multiplum af både 15 og 6 , selvom vi har 2 af dem herovre .
(src)="13"> Vi har 30 , og vi har 30 , vi har 60 og 60 igen .
(src)="14"> Det mindste fælles multiplum - hvis vi kun var interesseret i det mindste fælles multiplum af 15 og 6 - ville være 30 .
(trg)="5"> 60 என்பது போதுமானதாக இருக்கின்றது , ஏனெனில் அது 15 மற்றும் 60- ன் பொதுவான மடங்கு . இவற்றில் இரண்டு நம்மிடம் இருக்கிறது . நம்மிடம் ஒரு 30 மற்றும் ஒரு 30 , ஒரு 60 மற்றும் ஒரு 60 இருக்கிறது . எனவே , மீச்சிறு மீ . பொ . ம ... ... எனவே 15 மற்றும் 6- ன் பொதுவான மடங்கினை மட்டும் கருத்தில் எடுத்துக்கொண்டால் . நாம் அது 30 எனக் கூறலாம் . அதை ஒரு இடைப்பட்ட எண்ணாக எழுதுவோம் 15 மற்றும் 6- ன் மீ . பொ . ம . இதில் பொதுவாக இருக்கக்கூடிய மிகச் சிறிய மடங்கு ஆகும் .
(src)="17"> Det mindste multiplum , de har til fælles ses derovre .
(src)="18"> 15 gange 2 er 30 , og 6 gange 5 er 30 .
(src)="19"> Det er helt sikkert et fælles multiplum , og det er det mindste af alle deres multipla .
(trg)="6"> 15x2=30 , மற்றும் 6x5=30 . எனவே , நிச்சயமாக இது ஒரு பொது மடங்கு ஆகும் . மேலும் , இது அனைத்து மீ . பொ . ம . - க்களிலும் மிகச் சிறியதாகும் .
(src)="20"> 60 er også en fælles multiplum , men det er et større et .
(src)="21"> Vi skulle finde det mindste , og det er 30 .
(src)="22"> Vi har ikke set på 10 endnu .
(trg)="7"> 60- ம் பொது மடங்கு தான் , ஆனால் அது பெரியது . எனவே , 30 மீச்சிறு பொது மடங்கு ஆகும் . நாம் இன்னும் 10 ஐக் கருத்தில் கொள்ளவில்லை . எனவே , 10 ஐ உள்ளே கொண்டு வரலாம் .
(src)="25"> Lad os finde multipla af 10 .
(src)="26"> Det er 10 , 20 , 30 , 40 .
(src)="27"> Vi er allerede kommet langt nok , for vi har allerede 30 , og 30 er et fælles multiplum for 15 og 6 , og det er det mindste fælles multiplum for dem alle sammen .
(trg)="8"> 10- ன் மடங்குகளை கண்டுபிடிப்போம் . அவை 10 , 20 , 30 , 40 ... இது போதுமானது . ஏனெனில் , நாம் ஏற்கனவே 30 ஐ பெற்றுவிட்டோம் , 30 என்பது 15 மற்றும் 6- ன் பொது மடங்கு . மேலும் , இவை அனைத்திலும் இது மிகச்சிறிய பொது மடங்கு ஆகும் . உண்மையில் , 15 , 6 மற்றும் 10 ஆகியவற்றின் மீ . பொ . ம .
(src)="28"> Så det er det endelige resultat , at det mindste fælles multiplum for 15 , 6 og 10 er lig med 30 .
(src)="29"> Det var 1 metode til at finde det mindste fælles multiplum .
(src)="30"> Vi finder en række multipla og ser på dem hver især .
(trg)="9"> 30- ற்கு சமம் . மீச்சிறு பொது மடங்கை கண்டுபிடிக்க இது ஒரு வழி . ஒவ்வொரு எண்ணின் மடங்குகளையும் கண்டுபிடித்து பின்பு , அவற்றில் பொதுவாக உள்ள மிகச்சிறிய மடங்கு எது எனப் பார்க்கவும் . இதைற்கு மற்றொரு வழி , இந்த எண்களின் பகாக் காரணிகளைக் கண்டறிவது . மேலும் மீ . பொ . ம . என்பது , இந்த பகாக் காரணிகளின் அனைத்து எண்களையும் கொண்டிருக்கும் . நான் உங்களுக்குக் காண்பிக்கிறேன் . எனவே , நீங்கள் இந்த வழியில் செய்யலாம் , அல்லது 15 என்பது 3x5 சமமாகும் , அவ்வளவுதான் . இதுதான் அதன் பகாக்காரணிகள் , 15 என்பது 3x5 , ஏனெனில் 3 மற்றும் 5 இரண்டுமே பகா எண்கள் .
(src)="36"> Det er primfaktoriseringen , 15 er lig med 3 gange 5 , fordi både 3 og 5 er primtal .
(src)="37"> Vi kan sige , at 6 er det samme som 2 gange 3 .
(src)="38"> Det er det hele .
(trg)="10"> 6 என்பதை 2 பெருக்கல் 3 எனக் கூறலாம் . இது அதன் பகாக் காரணிகளாகும் , ஏனெனில் 2 மற்றும் 3 இரண்டுமே பகா எண்கள் தான் . பின்பு , 10 என்பது 2x5 எனக் கூறலாம் .
(src)="40"> Så kan vi sige , at 10 er det samme som 2 gange 5 .
(src)="41"> Både 2 og 5 er primtal , så vi er færdige med at faktorisere den .
(src)="42"> Det mindste fælles multiplum af 15 , 6 og 10 skal bare have alle de her primfaktorer .
(trg)="11"> 2 மற்றும் 5 இரண்டு எண்களுமே பகா எண்கள் தான் . எனவே , 15 , 6 மற்றும் 10 ஆகியவற்றின் மீ . பொ . ம . , இந்த அனைத்து பகாக் காரணிகளையும் பெற்றிருக்க வேண்டும் . அதாவது , 15 ஆல் வகுபட வேண்டுமென்றால் அந்த எண் தன்னுடைய பகாக் காரணிகளில் குறைந்தபட்சம் ஒரு 3 மற்றும் ஒரு 5- ஐ பெற்றிருக்க வேண்டும் . அதன் பகாக் காரணியில் 3x5- ஐ பெற்றிருந்தால் , அந்த எண் 15ஆல் வகுபடும் என்பதை இது உறுதிப்படுத்துகின்றது .