# bg/01fktUkl0vx8.xml.gz
# hi/01fktUkl0vx8.xml.gz


(src)="2"> Казали са ни да умножим 65 по 1 .
(src)="3"> Така че буквално ние просто трябва да умножим 65 - можем да напишем - това е знакът за умножение , записан ето така , или можем да го запишем като точка ето така - но това означава 65 по 1 .
(src)="4"> Има два начина за тълкуване на това .
(trg)="1"> हमे 65 में 1 का गुना करना है हमे 65 का गुना करने के ज़रूरत है हम लिख सकते हैं यह एसा है गुना के निशान की तरह या हम बिंदी लगाकर भी लिख सकते है ठीक वैसे ही लेकिन इसका मतलब 65 गुना 1 होता है और इसको सोचने के दो तरीके हैं तुम इस 65 के नंबर को एक बार देख सकते हो या तुम 1 नंबर 65 बार देख सकते हो सबको जोड़ दो लेकिन किसी भी तरीके से , अगर तुम्हारे पास एक बार 65 है , यह वस्तुतः 65 ही होगा . किसी भी नंबर को 1 से गुना करने वही नंबर आएगा जिसका गुना किया था जिसका भी गुना 1 में करते हैं वही चीज़ पुनः आएगी अगर मैं यहाँ किसी भी अग्यात संख्या का 1 का गुना से करता हूँ , और मैं इसे ऐसे भी लिख सकता हूँ गुना का चिन्ह गुना 1 तो हमे अग्यात संख्या मिलेगी तो अब तो अगर मैं 3 मैं 1 का गुना करता हूँ , मुझे 3 मिलेगा अगर मैं 5 का गुना 1 मैं करता हूँ मुझे 5 मिलेगा , क्योंकि यह यह सब यही कह रहे है 5 एक बार यदि मैं लिखता हूँ- मैं नही जनता 157 गुना 1 , वो 157 ही होगा मैं सोचता हूँ आप अभिप्राय समझ गये होगे

# bg/03Vw1W5iAIN4.xml.gz
# hi/03Vw1W5iAIN4.xml.gz


(src)="1"> Трябва да изчислим границата , когато ь се приближава към безкрайност , на 4x на квадрат минус 5x , всичко това върху 1 минус 3x на квадрат
(src)="2"> Безкрайността е странно число
(src)="3"> Не можем просто да заместим с ´безкрайност´ и да видим какво става
(trg)="1"> हम दृष्टिकोण अनंत 4 एक्स के रूप में , x की सीमा का मूल्यांकन करने की जरूरत शून्य से 5 एक्स चुकता , 3 एक्स शून्य से 1 से अधिक है कि सभी चुकता । तो अनंत की तरह एक अजीब नंबर है । तुम बस में इन्फिनिटी के पास प्लग नहीं कर सकते और देखो क्या होता है । लेकिन अगर तुम इस सीमा का मूल्यांकन करना चाहता था , क्या आप की कोशिश हो सकती है यदि आप के रूप में इस सीमा का पता करना चाहते करने के लिए बस का मूल्यांकन - है अमेरिका इन्फिनिटी दृष्टिकोण , तुम सच में बड़ी संख्या में डाल वहाँ है , और आप देखते हैं कि यह इन्फिनिटी दृष्टिकोण करने के लिए जा रहे हैं । कि अमेरिका के रूप में इन्फिनिटी दृष्टिकोण एक्स दृष्टिकोण अनंत । और अगर तुम सच में बड़ी संख्या में भाजक डाल , तुम देखना है कि जो भी - अच्छी तरह से जा रहे हैं , नहीं काफी अनंतता । 3 एक्स चुकता इन्फिनिटी दृष्टिकोण होगा , लेकिन हम कर रहे हैं यह subtracting के । यदि आप कुछ गैर- अनंत संख्या से अनंत घटाना यह है ऋणात्मक अनंतता होने जा रहा । अगर आप की तरह बस रहे थे तो यह अनंत पर मूल्यांकन , अमेरिका , आप धनात्मक अनंतता प्राप्त होगा । भाजक है , आप ऋणात्मक अनंतता प्राप्त होगा । तो मैं इसे इस तरह लिख देता हूँ । ऋणात्मक अनंतता । और वह दुविधा में पड़ा हुआ रूपों में से एक है उस L' Hopital शासन करने के लिए लागू किया जा सकता । और तुम शायद रहे हैं , हे , साल , कह क्यों हम भी कर रहे हैं

(src)="13"> Сигурно си казвате , ´но Сал , защо изобщо трябва да използваме правилото на Лопитал ?
(src)="14"> Мога да реша задачата и без правилото на Лопитал ! '
(src)="15"> И вероятно наистина можете , поне би трябвало
(trg)="2"> L' Hopital के नियम का उपयोग कर ? मैं कैसे L' Hopital के शासन के बिना ऐसा करने के लिए पता है । और तुम शायद नहीं , या आप होना चाहिए । और हम एक दूसरे में क्या करेंगे । लेकिन मैं सिर्फ तुम्हें उस L' Hopital नियम भी दिखाने के लिए चाहता था समस्या है , और मैं के इस प्रकार के लिए काम करता है के लिए वास्तव में सिर्फ चाहता था आप एक उदाहरण के एक अनंत नकारात्मक से अधिक था कि दिखाएँ या धनात्मक अनंतता दुविधा में पड़ा हुआ फार्म । लेकिन चलो L' Hopital के नियम यहाँ लागू करें । तो अगर इस सीमा मौजूद है , या यदि उनके डेरिवेटिव की सीमा मौजूद है , तो यह सीमा एक्स के रूप में सीमा के बराबर होने जा रहा है इन्फिनिटी अमेरिका के व्युत्पन्न का दृष्टिकोण । तो अमेरिका के व्युत्पन्न है - व्युत्पन्न 4 एक्स चुकता के व्युत्पन्न का शून्य से 5 से अधिक - 8 एक्स है भाजक है , ठीक है , 0 1 के व्युत्पन्न है । नकारात्मक 3 एक्स चुकता के व्युत्पन्न नकारात्मक 6 x है । और एक बार फिर , जब आप मूल्यांकन इन्फिनिटी , अमेरिका के लिए दृष्टिकोण अनंत जा रहा है । और भाजक ऋणात्मक अनंतता आ रहा है । नकारात्मक ऋणात्मक अनंतता 6 बार अनंत है । तो यह नकारात्मक अनन्तता है । तो चलो फिर से L' Hopital के नियम लागू होते हैं । तो अगर इन लोगों डेरिवेटिव की सीमा मौजूद - या इस आदमी के व्युत्पन्न का तर्कसंगत समारोह विभाजित मौजूद है उस के व्युत्पन्न द्वारा गाइ- कि अगर है , तो यह सीमा के दृष्टिकोण के रूप में एक्स सीमा को बराबर होना करने के लिए जा रहा है

(src)="27"> Значи ако съществува граница на производните на тези функции - или ако съществува рационална функция на производната на това разделена върху производната на това , то тогава тази граница ще е равна на границата когато x се приближава до безкрайност от ( сменям цвета на маркера ) 8x минус 5 е 8
(src)="28"> Производната на минус 6x е минус 6
(src)="29"> И това ни е просто константа
(trg)="3"> - मनमाने ढंग से स्विच रंगों की - व्युत्पन्न इन्फिनिटी 8 x 5 ऋण का है सिर्फ 8 । नकारात्मक 6 एक्स के व्युत्पन्न नकारात्मक 6 है । और यह सिर्फ होने जा रहा है - यह सिर्फ एक निरंतर यहाँ है । तो यह क्या सीमा तुम आ रहे हो कोई फर्क नहीं पड़ता है , यह है बस यह मान के बराबर करने के लिए जा रहा । कौन सा क्या है ? अगर हम यह सबसे कम आम के रूप में डाल दिया , या सरलीकृत फार्म का है , यह नकारात्मक 4/ 3 है ।

(src)="35"> Значи , тази граница съществува
(src)="36"> Това беше неопределена форма
(src)="37"> И границата на производната на тази функция върху производната на тази функция съществува , значи тази граница трябва е да е равна на минус 4/ 3
(trg)="4"> तो यह सीमा मौजूद है । यह एक दुविधा में पड़ा हुआ रूप था । और इस पर इस समारोह व्युत्पन्न की सीमा समारोह के व्युत्पन्न मौजूद है , तो यह सीमा निम्नलिखित भी करना होगा नकारात्मक 4/ 3 के बराबर । और यह कि द्वारा एक ही तर्क है , कि यह भी सीमित होना चाहिए 4/ 3 नकारात्मक करने के लिए बराबर । और तुम जो कह , अरे , के लिए हम पहले से ही पता था कि कैसे यह करने के लिए । हम सिर्फ एक एक्स चुकता बाहर कारक सकते । तुम बिल्कुल ठीक कह रहे हैं । और मैं तुम्हें दिखाता हूँ कि ठीक है यहाँ । बस तुम्हें दिखाने के लिए कि यह नहीं है केवल - तुम्हें पता है ,

(src)="43"> Само за да ви покажа , че правилото на Лопитал не е единственият начин да се реши задачата
(src)="44"> И , да ви кажа честно , първата ми реакция при такъв тип задача вероятно не би била да използвам правилото на Лопитал
(src)="45"> Можехме да кажем , че първата ни граница - границата когато x се приближава към верчността от 4x на квадрат минус 5x върху 1 минус 3x на квадрат , е равно на границата когато x се приближава към безкрайност
(trg)="5"> L' Hopital का शासन सिर्फ खेल से शहर में नहीं है । और सच कहूँ तो , इस प्रकार की समस्या , मेरी पहली प्रतिक्रिया के लिए शायद पहली बार L' Hopital के नियम का उपयोग करने के लिए गया है नहीं होगा । आपने कहा है सका कि पहले - इतना कि सीमा एक्स के रूप में सीमा 4 x 5 x 1 शून्य से अधिक शून्य से चुकता की अनंत दृष्टिकोण इन्फिनिटी एक्स दृष्टिकोण के रूप में 3 एक्स चुकता की सीमा के बराबर है । मुझे तुम्हें पता चलता है कि यह बराबर करने के लिए एक छोटा सा यहाँ , रेखा खींचना उस के लिए , यहाँ इस बात के लिए नहीं । इन्फिनिटी एक्स दृष्टिकोण के रूप में इस सीमा को बराबर है । चलो बाहर एक एक्स फैक्टर से बाहर अमेरिका चुकता और भाजक है । तो तुम एक एक्स 5 शून्य से 4 बार से अधिक एक्स चुकता है । है ना ?

(src)="50"> Нали ? x на квадрат по 5 върху x ще бъде 5x
(src)="51"> Делено на ... нека извадим x от числителя
(src)="52"> Значи , x на квадрат по 1 върху x на квадрат минус 3
(trg)="6"> 5 बार से अधिक एक्स चुकता x 5 x होने जा रहा है । विभाजित करके - चलो बाहर अमेरिका के बाहर एक एक्स फैक्टर । तो एक्स एक्स चुकता शून्य से 3 से अधिक 1 टाइम्स चुकता । और फिर इन एक्स squareds रद्द करें । तो यह दृष्टिकोण के रूप में एक्स सीमा को बराबर होने जा रहा है शून्य से 5 से अधिक से अधिक 1 एक्स पर x 4 की अनंत शून्य से 3 चुकता । और क्या करने के लिए बराबर किया जा रहा है ? खैर , दृष्टिकोण विभाजित करके जैसा कि अनंत- 5 x यह शब्द इन्फिनिटी- 0 होने जा रहा है । सुपर duper असीम रूप से बड़े भाजक , यह 0 होने जा रहा है । कि दृष्टिकोण 0 करने के लिए जा रहा है । और उसी प्रकार की दलील है । यह ठीक है यहाँ दृष्टिकोण 0 करने के लिए जा रहा है । सब तुम्हारे साथ रह रहे हैं एक 4 और एक 3 है नकारात्मक है । तो यह नकारात्मक , या 4 से अधिक के बराबर होने जा रहा है एक नकारात्मक 3 , या 4/ 3 नकारात्मक । तो आप L' Hopital के नियम का उपयोग किया था इस समस्या के लिए ।

# bg/0BCXM0UAYJaR.xml.gz
# hi/0BCXM0UAYJaR.xml.gz


(src)="1"> В началото на пътешествието ни в света на икономиката реших да започна с цитат от един от най- известните иконимисти на всички времена ,
(src)="2"> Шотландският философ Адам Смит .
(src)="3"> Може да се каже , че той е първият икономист в съвременния смисъл на думата .
(trg)="1"> अर्थशास्त्र की दुनिया की यात्रा शुरू करने से पहले मैं एक विख्यात अर्थशास्त्री , स्कॉटिश दार्शनिक एडम स्मिथ , की उक्ति बताना चाहूँगा | जो उन मायनों में प्रथम अर्थशास्त्री हैं | जिन मायनों में हम इसे अब देख रहे हैं | यह उनके पुस्तक " वेल्थ ऑफ नेशन्स " से है | जो 1776 में प्रकाशित हुई थी , संयोगवश , इसी वर्ष अमेरिकियों ने स्वतन्त्रता वर्ष की घोषणा की तथा यह उनकी सबसे विख्यात उद्धरण में से एक है | एक आर्थिक अभिनेता होने के कारण वह वास्तव में , न तो वह जनता के हित को बढावा देना चाहते हैं न ही यह जानते हैं कि वह इसे कितना बढ़ावा दे रहे हैं | उद्योग को इस तरह निर्देशित करके कि , उद्योग का नियंत्रण एक व्यक्ति विशेष के हाथो में इस तरह हों , कि इसके उत्पाद अधिकतम कीमत के रहें | वह केवल अपने लाभ का ही इरादा रखता है |

(src)="7"> " Той се стреми само към собствената си печалба "
(trg)="2"> " वह केवल अपने लाभ का ही इरादा रखता है | "

(src)="8"> Но в този , както и в много други случаи , е ръководен от невидима ръка , за да служи на цел , която не е била част от неговите намерения .
(src)="9"> И този термин " невидимата ръка " е известен .
(src)="10"> Воден от невидима ръка , за да служи на цел , която не е била част от неговите намерения .
(trg)="3"> ' इस मामले में भी , अन्य कई मामलों की तरह एक अदृश्य शक्ति की तरह संचालित होते हुए एक ऐसे छोर को बढ़ावा देता है जो उसने नहीं सोचा था | तथा यह शब्द " अदृश्य हाथ " प्रसिद्ध है| एक ऐसे छोर को बढ़ावा देता है जो उसने नहीं सोचा था | वह कह रहा है कि , देखो , जब व्यक्ति विशेष अपने स्वयं के हित के लिए कार्य करता है , तब यह सब अक्सर ऐसी स्थितियों की और ले जाता है जिसकी अपेक्षा किसी भी अभिनेता ने व्यक्तिगत तौर पर न सोची हो| फिर वह कहता हैं कि न ही यह सदैव समाज के लिए खराब होता है जैसे वह इसका हिस्सा ही नहीं था | इसलिए यह आवश्यक नहीं कि यह एक खराब चीज़ हों | अपने हितों के लिए कार्य करते हुए वह बार- बार ऐसी चीजों को प्रोत्साहित करता है जो कि समाज को ज्यादा प्रभावित करती हैं तब जब कि वह वास्तव में इसे प्रोत्साहित करने का लक्ष्य रखता है इसलिये यह वास्तव में एक मजबूत कथन है | वास्तव में यही पूंजीवाद की मूल भावना है| और इसीलिए मैं यह बताना चाहता हूँ कि यह उसी वर्ष प्रकाशित हुआ था जिस वर्ष में अमेरिकियों ने स्वतंत्रता की घोषणा की , क्योंकि प्रत्यक्ष रूप से अमेरिका , जो वित्त पोषण के जन्मदाता उन्होंने स्वतंत्रता के घोषणापत्र , संविधान , को लिखा जो इस बारे में बात करता है कि एक प्रजातान्त्रिक देश होने का क्या आशय है ओर इसके नागरिकों के अधिकार क्या हैं परन्तु संयुक्त राज्य , एक अमेरिकी के सम्पूर्ण अनुभवों के साथ कम से कम एडम स्मिथ के कार्य से इतना तो प्रभावित हैं कि इसके पूँजीवाद के मूलभूत विचार इस प्रकार के हैं | और वे दोनों लगभग एक ही समय में घटित हुए हैं | परन्तु यह विचार सदैव ही सहज न्ही होता |व्यक्ति विशेष अनिवार्य रूप से अपने हित के लिए कार्य करते हुए भी समाज के लिए ज्यादा अच्छा कर सकता है बनिस्बत तब जब उनमे से कोई वास्तव में समाज के भले की कोशिश कर रहा हों | और मैं ऐसा नहीं सोचता कि एडम स्मिथ कहेंगे कि स्वयं के हित के लिए कार्य करना सदैव ही अच्छा है , या लोगों द्वारा यह सोचना कभी अच्छा नहीं है कि उनके द्वारा किये हुए कार्यों के सामूहिक रूप से क्या परिणाम होते हैं | परन्तु वह बार- बार कहते हैं कि ... स्वहित के कार्य अधिक फायदेमंद हों सकते है , नये उपायों की तरफ ले जा सकते है बेहतर निवेश करा सकते है| अधिक उत्पादकता दे सकते है| अधिक सम्पन्नता की और ले जा सकते हैं| और इन सबसे अधिक हर किसी के लिए अधिक हिस्सेदारी | और अब अर्थशास्त्र सामान्यतः ... और जब वह ऐसा कहता है , वास्तव में वह सूक्ष्म आर्थिक ( micro economics/ माइक्रो इकोनॉमिक्स ) एवं व्यापक आर्थिक ( macro economics/ मैक्रो इकोनॉमिक्स ) बयान का मिश्रण बनाता है | सूक्ष्म वह है जब लोग या व्यक्ति विशेष , अपने स्वयं के हित के लिए कार्य करते हैं| और व्यापक वह हैं जो अर्थव्यवस्था के लिए अच्छे हो सकते हैं, और सम्पूर्ण राष्ट्र के लिए भी और इसीलिए , अब, आधुनिक अर्थशास्त्री स्वयं को इन दो विद्यालयों में या इन दो विषयों में विभाजित करते हैं| सूक्ष्म अर्थशास्त्र , जो व्यक्ति विशेष का अध्ययन है | सूक्ष्म अर्थशास्त्र ... और ये कोई फर्म हो सकती है , लोग हो सकते हैं , या घर हों सकते हैं | और व्यापक अर्थशास्त्र , जिसमे पूरी अर्थव्यवस्था का सामूहिक रूप से अध्ययन किया जाता है | व्यापक - अर्थशास्त्र और आप इसका शब्दों से अनुमान लगा सकते हैं सूक्ष्म -- से तात्पर्य बहुत छोटी बातों से है| व्यापक से तात्पर्य बड़े से है बड़े परिदृश्य से और इसीलिए सूक्ष्म अर्थशास्त्र बताता है कि वास्तव में व्यक्ति विशेष कैसे निर्णय लेता है या आप वास्तव में कह सकते हैं ´आवंटन ' , आवंटन या निर्णय | दुर्लभ संसाधनों का आवंटन ... और आप दुर्लभ संसाधन शब्द अक्सर सुनते हैं जब लोग अर्थशास्त्र के विषय में बात करते हैं और दुर्लभ संसाधन वह है जो आप अनंत मात्रा में नहीं रखते हैं | उदाहरण के लिए , प्यार एक दुर्लभ संसाधन नहीं हो सकता है| हों सकता है कि आपके पास प्यार अनंत मात्रा में हों परन्तु एक दुर्लभ संसाधन ऐसा हों सकता है जैसे कि खाना , पानी , पैसा , समय , ओर मजदूरी | ये सभी दुर्लभ संसाधन हैं| और इसीलिए यही सूक्ष्म अर्थशास्त्र है| कि लोग कैसे यह निर्णय लेते हैं कि उन दुर्लभ संसाधनों को कहाँ रखना है , वे कैसे निर्धारित करते हैं कि उन्हें कहाँ प्रयोग करना है और यह कैसे ... कैसे यह कीमत , बाजार व अन्य चीजों को प्रभावित करता है व्यापक अर्थशास्त्र पूरी अर्थव्यवस्था में हो रहे सामूहिक बदलाव का अध्ययन है | इसलिए ´समस्त ' , एक अर्थव्यवस्था में लाखों लोगों के द्वारा समस्त रूप से क्या किया गया यही समग्र अर्थव्यवस्था है | अब हमारे पास लाखों लोग / कर्ता हैं | और अक्सर नीति - संबंधित प्रश्नों पर केंद्रित रहती हैं | इसीलिए क्या आप करों को बढायेगे या घटाएंगे| या तब क्या होगा जब आप करों को बढायेगे या घटाएंगे क्या आप नियंत्रित करेंगे या मुक्त करेंगे ? यह सम्पूर्ण उत्पादन को कैसे प्रभावित करेगा जब आप यह करेंगे| इसीलिए यही नीति है ..... , ऊपर - नीचे ...